January  2020, 40(1): 491-508. doi: 10.3934/dcds.2020019

Variational principles of invariance pressures on partitions

School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006, China

* Corresponding author: Xing-Fu Zhong

Received  March 2019 Revised  June 2019 Published  October 2019

Fund Project: This work was supported by National Nature Science Funds of China (11771459, 11701584) and project of distinctive innovation of Guangdong University of Foreign Studies(18QN30)

We investigate the relations between Bowen and packing invariance pressures and measure-theoretical lower and upper invariance pressures for invariant partitions of a controlled invariant set respectively. We mainly show that Bowen and packing invariance pressures can be determined via the local lower and upper invariance pressures of probability measures, which are analogues of Billingsley's Theorem for the Hausdorff dimension; and give variational principles between Bowen and packing invariance pressures and measure-theoretical lower and upper invariance pressures under some technical assumptions.

Citation: Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019
References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Transactions of the American Mathematical Society, 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

F. Colonius, Invariance entropy, quasi-stationary measures and control sets, Discrete & Continuous Dynamical Systems - A, 38 (2018), 2093-2123.  doi: 10.3934/dcds.2018086.  Google Scholar

[3]

F. Colonius, Metric invariance entropy and conditionally invariant measures, Ergodic Theory and Dynamical Systems, 38 (2018), 921-939.  doi: 10.1017/etds.2016.72.  Google Scholar

[4]

F. ColoniusJ. A. N. Cossich and A. J. Santana, Invariance pressure of control sets, SIAM Journal on Control and Optimization, 56 (2018), 4130-4147.  doi: 10.1137/18M1191129.  Google Scholar

[5]

F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM Journal on Control and Optimization, 48 (2009), 1701-1721.  doi: 10.1137/080713902.  Google Scholar

[6]

F. ColoniusC. Kawan and G. Nair, A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 62 (2013), 377-381.  doi: 10.1016/j.sysconle.2013.01.008.  Google Scholar

[7]

F. Colonius, A. J. Santana and J. A. N. Cossich, Bounds for invariance pressure, arXiv: 1904.04768. Google Scholar

[8]

F. ColoniusA. J. Santana and J. A. N. Cossich, Invariance pressure for control systems, Journal of Dynamics and Differential Equations, 31 (2019), 1-23.  doi: 10.1007/s10884-018-9646-2.  Google Scholar

[9]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, Journal of Functional Analysis, 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

Y. Huang and X. Zhong, Carathéodory–Pesin structures associated with control systems, Systems & Control Letters, 112 (2018), 36-41.  doi: 10.1016/j.sysconle.2017.12.009.  Google Scholar

[11]

C. Kawan, Invariance Entropy for Deterministic Control Systems, An introduction. With a foreword by Fritz Colonius. Lecture Notes in Mathematics, 2089. Springer, Cham, 2013. doi: 10.1007/978-3-319-01288-9.  Google Scholar

[12]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces, Dokl. Akad. Nauk SSSR, 951 (1958), 861-864.   Google Scholar

[13]

J.-H. Ma and Z.-Y. Wen, A Billingsley type theorem for Bowen entropy, Comptes Rendus Mathematique, 346 (2008), 503–507, http://www.sciencedirect.com/science/article/pii/S1631073X08000927. doi: 10.1016/j.crma.2008.03.010.  Google Scholar

[14]

G. N. NairR. J. EvansI. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control, 49 (2004), 1585-1597.  doi: 10.1109/TAC.2004.834105.  Google Scholar

[15] Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[16]

X. TangW. C. Cheng and Y. Zhao, Variational principle for topological pressures on subsets, Journal of Mathematical Analysis & Applications, 424 (2015), 1272-1285.  doi: 10.1016/j.jmaa.2014.11.066.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory. [Graduate texts in mathematics, Vol. 79], Springer-Verlag, New York, 1982.  Google Scholar

[18]

T. WangY. Huang and H. Sun, Measure-theoretic invariance entropy for control systems, SIAM Journal on Control and Optimization, 57 (2019), 310-333.  doi: 10.1137/18M1197862.  Google Scholar

[19]

X. Zhong and Y. Huang, Invariance pressure dimensions for control systems, Journal of Dynamics and Differential Equations, (2018), 1–18. doi: 10.1007/s10884-018-9701-z.  Google Scholar

show all references

References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Transactions of the American Mathematical Society, 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

F. Colonius, Invariance entropy, quasi-stationary measures and control sets, Discrete & Continuous Dynamical Systems - A, 38 (2018), 2093-2123.  doi: 10.3934/dcds.2018086.  Google Scholar

[3]

F. Colonius, Metric invariance entropy and conditionally invariant measures, Ergodic Theory and Dynamical Systems, 38 (2018), 921-939.  doi: 10.1017/etds.2016.72.  Google Scholar

[4]

F. ColoniusJ. A. N. Cossich and A. J. Santana, Invariance pressure of control sets, SIAM Journal on Control and Optimization, 56 (2018), 4130-4147.  doi: 10.1137/18M1191129.  Google Scholar

[5]

F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM Journal on Control and Optimization, 48 (2009), 1701-1721.  doi: 10.1137/080713902.  Google Scholar

[6]

F. ColoniusC. Kawan and G. Nair, A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 62 (2013), 377-381.  doi: 10.1016/j.sysconle.2013.01.008.  Google Scholar

[7]

F. Colonius, A. J. Santana and J. A. N. Cossich, Bounds for invariance pressure, arXiv: 1904.04768. Google Scholar

[8]

F. ColoniusA. J. Santana and J. A. N. Cossich, Invariance pressure for control systems, Journal of Dynamics and Differential Equations, 31 (2019), 1-23.  doi: 10.1007/s10884-018-9646-2.  Google Scholar

[9]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, Journal of Functional Analysis, 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

Y. Huang and X. Zhong, Carathéodory–Pesin structures associated with control systems, Systems & Control Letters, 112 (2018), 36-41.  doi: 10.1016/j.sysconle.2017.12.009.  Google Scholar

[11]

C. Kawan, Invariance Entropy for Deterministic Control Systems, An introduction. With a foreword by Fritz Colonius. Lecture Notes in Mathematics, 2089. Springer, Cham, 2013. doi: 10.1007/978-3-319-01288-9.  Google Scholar

[12]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces, Dokl. Akad. Nauk SSSR, 951 (1958), 861-864.   Google Scholar

[13]

J.-H. Ma and Z.-Y. Wen, A Billingsley type theorem for Bowen entropy, Comptes Rendus Mathematique, 346 (2008), 503–507, http://www.sciencedirect.com/science/article/pii/S1631073X08000927. doi: 10.1016/j.crma.2008.03.010.  Google Scholar

[14]

G. N. NairR. J. EvansI. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control, 49 (2004), 1585-1597.  doi: 10.1109/TAC.2004.834105.  Google Scholar

[15] Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[16]

X. TangW. C. Cheng and Y. Zhao, Variational principle for topological pressures on subsets, Journal of Mathematical Analysis & Applications, 424 (2015), 1272-1285.  doi: 10.1016/j.jmaa.2014.11.066.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory. [Graduate texts in mathematics, Vol. 79], Springer-Verlag, New York, 1982.  Google Scholar

[18]

T. WangY. Huang and H. Sun, Measure-theoretic invariance entropy for control systems, SIAM Journal on Control and Optimization, 57 (2019), 310-333.  doi: 10.1137/18M1197862.  Google Scholar

[19]

X. Zhong and Y. Huang, Invariance pressure dimensions for control systems, Journal of Dynamics and Differential Equations, (2018), 1–18. doi: 10.1007/s10884-018-9701-z.  Google Scholar

[1]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[2]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[3]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[4]

Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651

[5]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[6]

Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041

[7]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[8]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[9]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[10]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[11]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[12]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[13]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[14]

Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286

[15]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[16]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[17]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[18]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[19]

Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445

[20]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henso, Carlos Castillo-Chavez. Raves, clubs and ecstasy: the impact of peer pressure. Mathematical Biosciences & Engineering, 2006, 3 (1) : 249-266. doi: 10.3934/mbe.2006.3.249

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (49)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]