-
Previous Article
Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes
- DCDS Home
- This Issue
-
Next Article
Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type
Variational principles of invariance pressures on partitions
School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006, China |
We investigate the relations between Bowen and packing invariance pressures and measure-theoretical lower and upper invariance pressures for invariant partitions of a controlled invariant set respectively. We mainly show that Bowen and packing invariance pressures can be determined via the local lower and upper invariance pressures of probability measures, which are analogues of Billingsley's Theorem for the Hausdorff dimension; and give variational principles between Bowen and packing invariance pressures and measure-theoretical lower and upper invariance pressures under some technical assumptions.
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew,
Topological entropy, Transactions of the American Mathematical Society, 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
F. Colonius,
Invariance entropy, quasi-stationary measures and control sets, Discrete & Continuous Dynamical Systems - A, 38 (2018), 2093-2123.
doi: 10.3934/dcds.2018086. |
[3] |
F. Colonius,
Metric invariance entropy and conditionally invariant measures, Ergodic Theory and Dynamical Systems, 38 (2018), 921-939.
doi: 10.1017/etds.2016.72. |
[4] |
F. Colonius, J. A. N. Cossich and A. J. Santana,
Invariance pressure of control sets, SIAM Journal on Control and Optimization, 56 (2018), 4130-4147.
doi: 10.1137/18M1191129. |
[5] |
F. Colonius and C. Kawan,
Invariance entropy for control systems, SIAM Journal on Control and Optimization, 48 (2009), 1701-1721.
doi: 10.1137/080713902. |
[6] |
F. Colonius, C. Kawan and G. Nair,
A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 62 (2013), 377-381.
doi: 10.1016/j.sysconle.2013.01.008. |
[7] |
F. Colonius, A. J. Santana and J. A. N. Cossich, Bounds for invariance pressure, arXiv: 1904.04768. |
[8] |
F. Colonius, A. J. Santana and J. A. N. Cossich,
Invariance pressure for control systems, Journal of Dynamics and Differential Equations, 31 (2019), 1-23.
doi: 10.1007/s10884-018-9646-2. |
[9] |
D.-J. Feng and W. Huang,
Variational principles for topological entropies of subsets, Journal of Functional Analysis, 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
Y. Huang and X. Zhong,
Carathéodory–Pesin structures associated with control systems, Systems & Control Letters, 112 (2018), 36-41.
doi: 10.1016/j.sysconle.2017.12.009. |
[11] |
C. Kawan, Invariance Entropy for Deterministic Control Systems, An introduction. With a foreword by Fritz Colonius. Lecture Notes in Mathematics, 2089. Springer, Cham, 2013.
doi: 10.1007/978-3-319-01288-9. |
[12] |
A. N. Kolmogorov,
A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces, Dokl. Akad. Nauk SSSR, 951 (1958), 861-864.
|
[13] |
J.-H. Ma and Z.-Y. Wen, A Billingsley type theorem for Bowen entropy, Comptes Rendus Mathematique, 346 (2008), 503–507, http://www.sciencedirect.com/science/article/pii/S1631073X08000927.
doi: 10.1016/j.crma.2008.03.010. |
[14] |
G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran,
Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control, 49 (2004), 1585-1597.
doi: 10.1109/TAC.2004.834105. |
[15] |
Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.
doi: 10.7208/chicago/9780226662237.001.0001.![]() ![]() ![]() |
[16] |
X. Tang, W. C. Cheng and Y. Zhao,
Variational principle for topological pressures on subsets, Journal of Mathematical Analysis & Applications, 424 (2015), 1272-1285.
doi: 10.1016/j.jmaa.2014.11.066. |
[17] |
P. Walters, An Introduction to Ergodic Theory. [Graduate texts in mathematics, Vol. 79], Springer-Verlag, New York, 1982. |
[18] |
T. Wang, Y. Huang and H. Sun,
Measure-theoretic invariance entropy for control systems, SIAM Journal on Control and Optimization, 57 (2019), 310-333.
doi: 10.1137/18M1197862. |
[19] |
X. Zhong and Y. Huang, Invariance pressure dimensions for control systems, Journal of Dynamics and Differential Equations, (2018), 1–18.
doi: 10.1007/s10884-018-9701-z. |
show all references
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew,
Topological entropy, Transactions of the American Mathematical Society, 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
F. Colonius,
Invariance entropy, quasi-stationary measures and control sets, Discrete & Continuous Dynamical Systems - A, 38 (2018), 2093-2123.
doi: 10.3934/dcds.2018086. |
[3] |
F. Colonius,
Metric invariance entropy and conditionally invariant measures, Ergodic Theory and Dynamical Systems, 38 (2018), 921-939.
doi: 10.1017/etds.2016.72. |
[4] |
F. Colonius, J. A. N. Cossich and A. J. Santana,
Invariance pressure of control sets, SIAM Journal on Control and Optimization, 56 (2018), 4130-4147.
doi: 10.1137/18M1191129. |
[5] |
F. Colonius and C. Kawan,
Invariance entropy for control systems, SIAM Journal on Control and Optimization, 48 (2009), 1701-1721.
doi: 10.1137/080713902. |
[6] |
F. Colonius, C. Kawan and G. Nair,
A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 62 (2013), 377-381.
doi: 10.1016/j.sysconle.2013.01.008. |
[7] |
F. Colonius, A. J. Santana and J. A. N. Cossich, Bounds for invariance pressure, arXiv: 1904.04768. |
[8] |
F. Colonius, A. J. Santana and J. A. N. Cossich,
Invariance pressure for control systems, Journal of Dynamics and Differential Equations, 31 (2019), 1-23.
doi: 10.1007/s10884-018-9646-2. |
[9] |
D.-J. Feng and W. Huang,
Variational principles for topological entropies of subsets, Journal of Functional Analysis, 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
Y. Huang and X. Zhong,
Carathéodory–Pesin structures associated with control systems, Systems & Control Letters, 112 (2018), 36-41.
doi: 10.1016/j.sysconle.2017.12.009. |
[11] |
C. Kawan, Invariance Entropy for Deterministic Control Systems, An introduction. With a foreword by Fritz Colonius. Lecture Notes in Mathematics, 2089. Springer, Cham, 2013.
doi: 10.1007/978-3-319-01288-9. |
[12] |
A. N. Kolmogorov,
A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces, Dokl. Akad. Nauk SSSR, 951 (1958), 861-864.
|
[13] |
J.-H. Ma and Z.-Y. Wen, A Billingsley type theorem for Bowen entropy, Comptes Rendus Mathematique, 346 (2008), 503–507, http://www.sciencedirect.com/science/article/pii/S1631073X08000927.
doi: 10.1016/j.crma.2008.03.010. |
[14] |
G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran,
Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control, 49 (2004), 1585-1597.
doi: 10.1109/TAC.2004.834105. |
[15] |
Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.
doi: 10.7208/chicago/9780226662237.001.0001.![]() ![]() ![]() |
[16] |
X. Tang, W. C. Cheng and Y. Zhao,
Variational principle for topological pressures on subsets, Journal of Mathematical Analysis & Applications, 424 (2015), 1272-1285.
doi: 10.1016/j.jmaa.2014.11.066. |
[17] |
P. Walters, An Introduction to Ergodic Theory. [Graduate texts in mathematics, Vol. 79], Springer-Verlag, New York, 1982. |
[18] |
T. Wang, Y. Huang and H. Sun,
Measure-theoretic invariance entropy for control systems, SIAM Journal on Control and Optimization, 57 (2019), 310-333.
doi: 10.1137/18M1197862. |
[19] |
X. Zhong and Y. Huang, Invariance pressure dimensions for control systems, Journal of Dynamics and Differential Equations, (2018), 1–18.
doi: 10.1007/s10884-018-9701-z. |
[1] |
Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309 |
[2] |
Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409 |
[3] |
Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149 |
[4] |
Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146 |
[5] |
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007 |
[6] |
Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651 |
[7] |
Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018 |
[8] |
Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041 |
[9] |
Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97 |
[10] |
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169 |
[11] |
Robert Jarrow, Philip Protter, Jaime San Martin. Asset price bubbles: Invariance theorems. Frontiers of Mathematical Finance, 2022, 1 (2) : 161-188. doi: 10.3934/fmf.2021006 |
[12] |
Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43 |
[13] |
Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure and Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107 |
[14] |
Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009 |
[15] |
Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533 |
[16] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[17] |
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 |
[18] |
Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286 |
[19] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[20] |
M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure and Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]