January  2020, 40(1): 509-528. doi: 10.3934/dcds.2020020

Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes

1. 

Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Las Sophoras 173, Santiago, Estación Central, Santiago, Chile

2. 

Universitat Jaume I, Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Campus del Riu Sec s/n, 12071 Castelló, Spain

* Corresponding author: Carlos Lizama

Received  March 2019 Revised  July 2019 Published  October 2019

Fund Project: The first author is supported by FONDECYT grant 1180041

In this paper we investigate conditions for maximal regularity of Volterra equations defined on the Lebesgue space of sequences $ \ell_p(\mathbb{Z}) $ by using Blünck's theorem on the equivalence between operator-valued $ \ell_p $-multipliers and the notion of $ R $-boundedness. We show sufficient conditions for maximal $ \ell_p-\ell_q $ regularity of solutions of such problems solely in terms of the data. We also explain the significance of kernel sequences in the theory of viscoelasticity, establishing a new and surprising connection with schemes of approximation of fractional models.

Citation: Carlos Lizama, Marina Murillo-Arcila. Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 509-528. doi: 10.3934/dcds.2020020
References:
[1]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, Cesáro sums and algebra homomorphisms of bounded operators, Israel J. Math., 216 (2016), 471-505.  doi: 10.1007/s11856-016-1417-3.  Google Scholar

[2]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discr. Cont. Dyn. Systems, Series A, 39 (2019), 2679-2708.  doi: 10.3934/dcds.2019112.  Google Scholar

[3]

R. P. Agarwal, C. Cuevas and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer-Verlag, Cham, 2014. doi: 10.1007/978-3-319-06447-5.  Google Scholar

[4]

G. AkrivisB. Li and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp., 86 (2017), 1527-1552.  doi: 10.1090/mcom/3228.  Google Scholar

[5]

H. Amann, Linear and Quasilinear Parabolic Problems, Monographs in Mathematics, 89, Birkhäuser-Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[6]

A. AshyralyevS. Piskarev and L. Weis, On well-posedness of difference schemes for abstract parabolic equations in $L_p([0, T ]; E)$spaces, Numer. Funct. Anal. Optim., 23 (2002), 669-693.  doi: 10.1081/NFA-120016264.  Google Scholar

[7]

S. Blünck, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146 (2001), 157-176.  doi: 10.4064/sm146-2-3.  Google Scholar

[8]

R. E. Corman, L. Rao, N. Ashwin-Bharadwaj, J. T. Allison and R. H. Ewoldt, Setting material function design targets for linear viscoelastic materials and structures, J. Mech. Des., 138 (2016), 051402, 12pp. doi: 10.1115/1.4032698.  Google Scholar

[9]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), ⅷ+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[10]

S. Elaydi, Stability and asymptoticity of Volterra difference equations: A progress report, J. Comp. Appl. Math., 228 (2009), 504-513.  doi: 10.1016/j.cam.2008.03.023.  Google Scholar

[11]

B. JinB. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math., 138 (2018), 101-131.  doi: 10.1007/s00211-017-0904-8.  Google Scholar

[12]

T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math., 234 (2016), 241-263.   Google Scholar

[13]

T. Kemmochi and N. Saito, Discrete maximal regularity and the finite element method for parabolic equations, Numer. Math., 138 (2018), 905-937.  doi: 10.1007/s00211-017-0929-z.  Google Scholar

[14]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.  Google Scholar

[15]

B. KovácsB. Li and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal., 54 (2016), 3600-3624.  doi: 10.1137/15M1040918.  Google Scholar

[16]

D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math., 135 (2017), 923-952.  doi: 10.1007/s00211-016-0821-2.  Google Scholar

[17]

B. Li and W. Sun, Maximal regularity of fully discrete finite element solutions of parabolic equations, SIAM J. Numer. Anal., 55 (2017), 521-542.  doi: 10.1137/16M1071912.  Google Scholar

[18]

B. Li and W. Sun, Maximal $L_p$ analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp., 86 (2017), 1071-1102.  doi: 10.1090/mcom/3133.  Google Scholar

[19]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.  Google Scholar

[20]

C. Lizama., $\ell_p$-maximal regularity for fractional difference equations on $UMD$ spaces., Math. Nach., 288 (2015), 2079-2092.  doi: 10.1002/mana.201400326.  Google Scholar

[21]

C. Lizama and M. Murillo-Arcila, Maximal regularity in $\ell_p$ spaces for discrete time fractional shifted equations, J. Differential Equations, 263 (2017), 3175-3196.  doi: 10.1016/j.jde.2017.04.035.  Google Scholar

[22]

C. Lubich, Convolution quadrature and discretized operational calculus I, Numer. Math., 52 (1988), 129-145.  doi: 10.1007/BF01398686.  Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel Heidelberg, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

show all references

References:
[1]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, Cesáro sums and algebra homomorphisms of bounded operators, Israel J. Math., 216 (2016), 471-505.  doi: 10.1007/s11856-016-1417-3.  Google Scholar

[2]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discr. Cont. Dyn. Systems, Series A, 39 (2019), 2679-2708.  doi: 10.3934/dcds.2019112.  Google Scholar

[3]

R. P. Agarwal, C. Cuevas and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer-Verlag, Cham, 2014. doi: 10.1007/978-3-319-06447-5.  Google Scholar

[4]

G. AkrivisB. Li and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp., 86 (2017), 1527-1552.  doi: 10.1090/mcom/3228.  Google Scholar

[5]

H. Amann, Linear and Quasilinear Parabolic Problems, Monographs in Mathematics, 89, Birkhäuser-Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[6]

A. AshyralyevS. Piskarev and L. Weis, On well-posedness of difference schemes for abstract parabolic equations in $L_p([0, T ]; E)$spaces, Numer. Funct. Anal. Optim., 23 (2002), 669-693.  doi: 10.1081/NFA-120016264.  Google Scholar

[7]

S. Blünck, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146 (2001), 157-176.  doi: 10.4064/sm146-2-3.  Google Scholar

[8]

R. E. Corman, L. Rao, N. Ashwin-Bharadwaj, J. T. Allison and R. H. Ewoldt, Setting material function design targets for linear viscoelastic materials and structures, J. Mech. Des., 138 (2016), 051402, 12pp. doi: 10.1115/1.4032698.  Google Scholar

[9]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), ⅷ+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[10]

S. Elaydi, Stability and asymptoticity of Volterra difference equations: A progress report, J. Comp. Appl. Math., 228 (2009), 504-513.  doi: 10.1016/j.cam.2008.03.023.  Google Scholar

[11]

B. JinB. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math., 138 (2018), 101-131.  doi: 10.1007/s00211-017-0904-8.  Google Scholar

[12]

T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math., 234 (2016), 241-263.   Google Scholar

[13]

T. Kemmochi and N. Saito, Discrete maximal regularity and the finite element method for parabolic equations, Numer. Math., 138 (2018), 905-937.  doi: 10.1007/s00211-017-0929-z.  Google Scholar

[14]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.  Google Scholar

[15]

B. KovácsB. Li and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal., 54 (2016), 3600-3624.  doi: 10.1137/15M1040918.  Google Scholar

[16]

D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math., 135 (2017), 923-952.  doi: 10.1007/s00211-016-0821-2.  Google Scholar

[17]

B. Li and W. Sun, Maximal regularity of fully discrete finite element solutions of parabolic equations, SIAM J. Numer. Anal., 55 (2017), 521-542.  doi: 10.1137/16M1071912.  Google Scholar

[18]

B. Li and W. Sun, Maximal $L_p$ analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp., 86 (2017), 1071-1102.  doi: 10.1090/mcom/3133.  Google Scholar

[19]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.  Google Scholar

[20]

C. Lizama., $\ell_p$-maximal regularity for fractional difference equations on $UMD$ spaces., Math. Nach., 288 (2015), 2079-2092.  doi: 10.1002/mana.201400326.  Google Scholar

[21]

C. Lizama and M. Murillo-Arcila, Maximal regularity in $\ell_p$ spaces for discrete time fractional shifted equations, J. Differential Equations, 263 (2017), 3175-3196.  doi: 10.1016/j.jde.2017.04.035.  Google Scholar

[22]

C. Lubich, Convolution quadrature and discretized operational calculus I, Numer. Math., 52 (1988), 129-145.  doi: 10.1007/BF01398686.  Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel Heidelberg, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[1]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[2]

Laetitia Paoli. A velocity-based time-stepping scheme for multibody dynamics with unilateral constraints. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1609-1619. doi: 10.3934/dcdss.2013.6.1609

[3]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[4]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations & Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[5]

Andrea L. Bertozzi, Ning Ju, Hsiang-Wei Lu. A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1367-1391. doi: 10.3934/dcds.2011.29.1367

[6]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[7]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[8]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[9]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[10]

Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations & Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004

[11]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[12]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics & Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[13]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[14]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[15]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[16]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[17]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[18]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[19]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[20]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

2018 Impact Factor: 1.143

Article outline

[Back to Top]