-
Previous Article
The sign of traveling wave speed in bistable dynamics
- DCDS Home
- This Issue
-
Next Article
Asymptotic population abundance of a two-patch system with asymmetric diffusion
On the viscous Camassa-Holm equations with fractional diffusion
1. | Center for Applied Mathematics, Tianjin University, Tianjin 300072, China |
2. | Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA |
We study Cauchy problem of a class of viscous Camassa-Holm equations (or Lagrangian averaged Navier-Stokes equations) with fractional diffusion in both smooth bounded domains and in the whole space in two and three dimensions. Order of the fractional diffusion is assumed to be $ 2s $ with $ s\in [n/4,1) $, which seems to be sharp for the validity of the main results of the paper; here $ n = 2,3 $ is the dimension of space. We prove global well-posedness in $ C_{[0,+\infty)}(D(A))\cap L^2_{[0,+\infty),loc}(D(A^{1+s/2})) $ whenever the initial data $ u_0\in D(A) $, where $ A $ is the Stokes operator. We also prove that such global solutions gain regularity instantaneously after the initial time. A bound on a higher-order spatial norm is also obtained.
References:
[1] |
C. Bjorland,
Decay asymptotics of the viscous Camassa-Holm equations in the plane, SIAM Journal on Mathematical Analysis, 40 (2008), 516-539.
doi: 10.1137/070684070. |
[2] |
C. Bjorland and M. E. Schonbek,
On questions of decay and existence for the viscous Camassa-Holm equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 907-936.
doi: 10.1016/j.anihpc.2007.07.003. |
[3] |
L. A. Caffarelli and A. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[4] |
S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne,
The Camassa-Holm equations and turbulence, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 49-65.
doi: 10.1016/S0167-2789(99)00098-6. |
[5] |
S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow,, Phys. Rev. Lett., 81 (1998), 5338-5341.
doi: 10.1103/PhysRevLett.81.5338. |
[6] |
S. Chen, D. D. Holm, L. G. Margolin and R. Zhang,
Direct numerical simulations of the Navier-Stokes alpha model, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 66-83.
doi: 10.1016/S0167-2789(99)00099-8. |
[7] |
A. Cheskidov,
Boundary layer for the Navier-Stokes-alpha model of fluid turbulence, Arch. Ration. Mech. Anal., 172 (2004), 333-362.
doi: 10.1007/s00205-004-0305-x. |
[8] |
M. Colombo, C. De Lellis and L. De Rosa, Ill-posedness of Leray solutions for the ipodissipative Navier-Stokes equations, Comm. Math. Phys., 362 (2018), 659-688.
doi: 10.1007/s00220-018-3177-x. |
[9] |
P. Constantin, D. Córdoba, F. Gancedo, L. Rodriguez-Piazza and R. M. Strain,
On the Muskat problem: Global in time results in 2D and 3D, Amer. J. Math., 138 (2016), 1455-1494.
doi: 10.1353/ajm.2016.0044. |
[10] |
P. Constantin, T. Elgindi, M. Ignatova and V. Vicol,
On some electroconvection models, J. Nonlinear Sci., 27 (2017), 197-211.
doi: 10.1007/s00332-016-9329-2. |
[11] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
doi: 10.1088/0951-7715/7/6/001. |
[12] |
P. Constantin and H. Q. Nguyen, Local and global strong solutions for SQG in bounded domains, Phys. D, 376/377 (2018), 195-203.
doi: 10.1016/j.physd.2017.08.008. |
[13] |
A. Córdoba, D. Córdoba and M. A. Fontelos,
Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math., 162 (2005), 1377-1389.
doi: 10.4007/annals.2005.162.1377. |
[14] |
A. Córdoba, D. Córdoba and F. Gancedo,
Interface evolution: The Hele-Shaw and Muskat problems, Ann. of Math., 173 (2011), 477-542.
doi: 10.4007/annals.2011.173.1.10. |
[15] |
D. Coutand, J. Peirce and S. Shkoller,
Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains, Commun. Pure Appl. Anal., 1 (2002), 35-50.
doi: 10.3934/cpaa.2002.1.35. |
[16] |
C. Foias, D. D. Holm and E. S. Titi,
The Navier-Stokes-alpha model of fluid turbulence, Phys. D, 152/153 (2001), 505-519.
doi: 10.1016/S0167-2789(01)00191-9. |
[17] |
C. Foias, D. D. Holm and E. S. Titi,
The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.
doi: 10.1023/A:1012984210582. |
[18] |
H. Fujita and T. Kato,
On the Navier-Stokes initial value problem. Ⅰ, Arch. Rational Mech. Anal., 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[19] |
Y. Giga,
Solutions for semilinear parabolic equations in ${L}^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[20] |
Y. Giga and T. Miyakawa,
Solutions in ${L}^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[21] |
D. D. Holm,
Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 215-269.
doi: 10.1016/S0167-2789(99)00093-7. |
[22] |
D. D. Holm,
Karman-Howarth theorem for the Lagrangian-averaged Navier-Stokes-alpha model of turbulence, J. Fluid Mech., 467 (2002), 205-214.
doi: 10.1017/S002211200200160X. |
[23] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[24] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173.
doi: 10.1103/PhysRevLett.80.4173. |
[25] |
A. A. Kiselev and O. A. Ladyzhenskaya,
On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat., 21 (1957), 655-680.
|
[26] |
F. -H. Lin and J. Tong,
Solvability of the stokes immersed boundary problem in two dimensions, Comm. Pure Appl. Math., 72 (2019), 159-226.
doi: 10.1002/cpa.21764. |
[27] |
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. |
[28] |
J. E. Marsden and S. Shkoller,
Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations on bounded domains, Topological methods in the physical sciences (London, 2000), R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1449-1468.
doi: 10.1098/rsta.2001.0852. |
[29] |
J. E. Marsden and S. Shkoller,
The anisotropic Lagrangian averaged Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 166 (2003), 27-46.
doi: 10.1007/s00205-002-0207-8. |
[30] |
K. Mohseni, B. Kosović, S. Shkoller and J. E. Marsden,
Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence, Phys. Fluids, 15 (2003), 524-544.
doi: 10.1063/1.1533069. |
[31] |
S. Shkoller,
Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid, J. Differential Geom., 55 (2000), 145-191.
doi: 10.4310/jdg/1090340568. |
[32] |
R. Temam, Navier-Stokes Equations, Theory and numerical analysis. With an appendix by F. Thomasset. Third edition. Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
show all references
References:
[1] |
C. Bjorland,
Decay asymptotics of the viscous Camassa-Holm equations in the plane, SIAM Journal on Mathematical Analysis, 40 (2008), 516-539.
doi: 10.1137/070684070. |
[2] |
C. Bjorland and M. E. Schonbek,
On questions of decay and existence for the viscous Camassa-Holm equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 907-936.
doi: 10.1016/j.anihpc.2007.07.003. |
[3] |
L. A. Caffarelli and A. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[4] |
S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne,
The Camassa-Holm equations and turbulence, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 49-65.
doi: 10.1016/S0167-2789(99)00098-6. |
[5] |
S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow,, Phys. Rev. Lett., 81 (1998), 5338-5341.
doi: 10.1103/PhysRevLett.81.5338. |
[6] |
S. Chen, D. D. Holm, L. G. Margolin and R. Zhang,
Direct numerical simulations of the Navier-Stokes alpha model, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 66-83.
doi: 10.1016/S0167-2789(99)00099-8. |
[7] |
A. Cheskidov,
Boundary layer for the Navier-Stokes-alpha model of fluid turbulence, Arch. Ration. Mech. Anal., 172 (2004), 333-362.
doi: 10.1007/s00205-004-0305-x. |
[8] |
M. Colombo, C. De Lellis and L. De Rosa, Ill-posedness of Leray solutions for the ipodissipative Navier-Stokes equations, Comm. Math. Phys., 362 (2018), 659-688.
doi: 10.1007/s00220-018-3177-x. |
[9] |
P. Constantin, D. Córdoba, F. Gancedo, L. Rodriguez-Piazza and R. M. Strain,
On the Muskat problem: Global in time results in 2D and 3D, Amer. J. Math., 138 (2016), 1455-1494.
doi: 10.1353/ajm.2016.0044. |
[10] |
P. Constantin, T. Elgindi, M. Ignatova and V. Vicol,
On some electroconvection models, J. Nonlinear Sci., 27 (2017), 197-211.
doi: 10.1007/s00332-016-9329-2. |
[11] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
doi: 10.1088/0951-7715/7/6/001. |
[12] |
P. Constantin and H. Q. Nguyen, Local and global strong solutions for SQG in bounded domains, Phys. D, 376/377 (2018), 195-203.
doi: 10.1016/j.physd.2017.08.008. |
[13] |
A. Córdoba, D. Córdoba and M. A. Fontelos,
Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math., 162 (2005), 1377-1389.
doi: 10.4007/annals.2005.162.1377. |
[14] |
A. Córdoba, D. Córdoba and F. Gancedo,
Interface evolution: The Hele-Shaw and Muskat problems, Ann. of Math., 173 (2011), 477-542.
doi: 10.4007/annals.2011.173.1.10. |
[15] |
D. Coutand, J. Peirce and S. Shkoller,
Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains, Commun. Pure Appl. Anal., 1 (2002), 35-50.
doi: 10.3934/cpaa.2002.1.35. |
[16] |
C. Foias, D. D. Holm and E. S. Titi,
The Navier-Stokes-alpha model of fluid turbulence, Phys. D, 152/153 (2001), 505-519.
doi: 10.1016/S0167-2789(01)00191-9. |
[17] |
C. Foias, D. D. Holm and E. S. Titi,
The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.
doi: 10.1023/A:1012984210582. |
[18] |
H. Fujita and T. Kato,
On the Navier-Stokes initial value problem. Ⅰ, Arch. Rational Mech. Anal., 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[19] |
Y. Giga,
Solutions for semilinear parabolic equations in ${L}^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[20] |
Y. Giga and T. Miyakawa,
Solutions in ${L}^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[21] |
D. D. Holm,
Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Phys. D, 133 (1999), 215-269.
doi: 10.1016/S0167-2789(99)00093-7. |
[22] |
D. D. Holm,
Karman-Howarth theorem for the Lagrangian-averaged Navier-Stokes-alpha model of turbulence, J. Fluid Mech., 467 (2002), 205-214.
doi: 10.1017/S002211200200160X. |
[23] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[24] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173.
doi: 10.1103/PhysRevLett.80.4173. |
[25] |
A. A. Kiselev and O. A. Ladyzhenskaya,
On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat., 21 (1957), 655-680.
|
[26] |
F. -H. Lin and J. Tong,
Solvability of the stokes immersed boundary problem in two dimensions, Comm. Pure Appl. Math., 72 (2019), 159-226.
doi: 10.1002/cpa.21764. |
[27] |
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. |
[28] |
J. E. Marsden and S. Shkoller,
Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations on bounded domains, Topological methods in the physical sciences (London, 2000), R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1449-1468.
doi: 10.1098/rsta.2001.0852. |
[29] |
J. E. Marsden and S. Shkoller,
The anisotropic Lagrangian averaged Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 166 (2003), 27-46.
doi: 10.1007/s00205-002-0207-8. |
[30] |
K. Mohseni, B. Kosović, S. Shkoller and J. E. Marsden,
Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence, Phys. Fluids, 15 (2003), 524-544.
doi: 10.1063/1.1533069. |
[31] |
S. Shkoller,
Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid, J. Differential Geom., 55 (2000), 145-191.
doi: 10.4310/jdg/1090340568. |
[32] |
R. Temam, Navier-Stokes Equations, Theory and numerical analysis. With an appendix by F. Thomasset. Third edition. Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
[1] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[2] |
Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353 |
[3] |
Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 |
[4] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[5] |
Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517 |
[6] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[7] |
Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143 |
[8] |
Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101 |
[9] |
Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845 |
[10] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[11] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[12] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[13] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[14] |
H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133 |
[15] |
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545 |
[16] |
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 |
[17] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[18] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[19] |
Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158 |
[20] |
Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]