June  2020, 40(6): 3411-3425. doi: 10.3934/dcds.2020031

Asymptotic population abundance of a two-patch system with asymmetric diffusion

1. 

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

2. 

U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL 32653, USA

* Corresponding author: Donald DeAngelis

Received  January 2019 Revised  June 2019 Published  October 2019

Fund Project: The second author is supported by NSF grant of China (11571382)

This paper considers a two-patch system with asymmetric diffusion rates, in which exploitable resources are included. By using dynamical system theory, we exclude periodic solution in the one-patch subsystem and demonstrate its global dynamics. Then we exhibit uniform persistence of the two-patch system and demonstrate uniqueness of the positive equilibrium, which is shown to be asymptotically stable when the diffusion rates are sufficiently large. By a thorough analysis on the asymptotic population abundance, we demonstrate necessary and sufficient conditions under which the asymmetric diffusion rates can lead to the result that total equilibrium population abundance in heterogeneous environments is larger than that in heterogeneous/homogeneous environments with no diffusion, which is not intuitive. Our result extends previous work to the situation of asymmetric diffusion and provides new insights. Numerical simulations confirm and extend our results.

Citation: Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031
References:
[1]

R. ArditiN. Perrin and H. Saiah, Functional responses and heterogeneities: An experimental test with cladocerans, Oikos, 60 (1991), 69-75.  doi: 10.2307/3544994.  Google Scholar

[2]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.   Google Scholar

[3]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[4]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

B. J. CardinaleM. A. PalmerC. M. SwanS. Brooks and N. Leroy Poff, The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem, Ecology, 83 (2002), 412-422.   Google Scholar

[7]

C. Cosner, Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58 (1996), 207-246.  doi: 10.1007/BF02458307.  Google Scholar

[8]

D. L. DeAngelisW. Ni and B. Zhang, Dispersal and heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.  Google Scholar

[9]

D. L. DeAngelisW. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.   Google Scholar

[10] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[13]

J. C. Poggiale and P. Auger, Fast Oscillating Migrations in a predator-prey model, Math. Models Methods Appl. Sci., 6 (1996), 217-226.  doi: 10.1142/S0218202596000559.  Google Scholar

[14]

J. C. Poggiale, From behavioral to population level: Growth and competition, Aggregation and emergence in population dynamics,, Math. Comput. Modelling, 27 (1998), 41-49.  doi: 10.1016/S0895-7177(98)00004-1.  Google Scholar

[15]

J. C. PoggialeP. AugerD. NeriniC. Mante and F. Gilbert, Global production increased by spatial heterogeneity in a population dynamics model, Acta, Biotheor, 53 (2005), 359-370.   Google Scholar

[16]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theoret. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[17]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[18]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW. -M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

[19]

B. ZhangX. LiuD. L. DeAngelisW. -M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

show all references

References:
[1]

R. ArditiN. Perrin and H. Saiah, Functional responses and heterogeneities: An experimental test with cladocerans, Oikos, 60 (1991), 69-75.  doi: 10.2307/3544994.  Google Scholar

[2]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.   Google Scholar

[3]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[4]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

B. J. CardinaleM. A. PalmerC. M. SwanS. Brooks and N. Leroy Poff, The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem, Ecology, 83 (2002), 412-422.   Google Scholar

[7]

C. Cosner, Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58 (1996), 207-246.  doi: 10.1007/BF02458307.  Google Scholar

[8]

D. L. DeAngelisW. Ni and B. Zhang, Dispersal and heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.  Google Scholar

[9]

D. L. DeAngelisW. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.   Google Scholar

[10] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[13]

J. C. Poggiale and P. Auger, Fast Oscillating Migrations in a predator-prey model, Math. Models Methods Appl. Sci., 6 (1996), 217-226.  doi: 10.1142/S0218202596000559.  Google Scholar

[14]

J. C. Poggiale, From behavioral to population level: Growth and competition, Aggregation and emergence in population dynamics,, Math. Comput. Modelling, 27 (1998), 41-49.  doi: 10.1016/S0895-7177(98)00004-1.  Google Scholar

[15]

J. C. PoggialeP. AugerD. NeriniC. Mante and F. Gilbert, Global production increased by spatial heterogeneity in a population dynamics model, Acta, Biotheor, 53 (2005), 359-370.   Google Scholar

[16]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theoret. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[17]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[18]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW. -M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

[19]

B. ZhangX. LiuD. L. DeAngelisW. -M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

Figure 1.  Phase-plane diagram of system (6). Stable equilibrium is displayed by solid circle. Vector fields are shown by gray arrows. Isoclines of nutrient $ u_1 $ and consumer $ v_1 $ are represented by red and blue lines, respectively. According to parameter values in experiments by Zhang et al. (2017), let $ N_{01} = 0.02, r = 0.1, k_1 = 0.1, \gamma = 0.01, g_1 = 0.0001 $. Then $ u_{01} = 0.2 < r^2/g_1 $. Numerical simulations show that all positive solutions of (6) converge to equilibrium $ E_1^+ $, which is consistent with Theorem 2.1(ⅱ)
Figure 2.  Numerical simulations for comparison of $ T_1 $ and $ T_0 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. When $ s = 0.1 $, we obtain $ T_1 = 11.9531 >8.5095 = T_0 $ by numerical computations on (4)
Figure 3.  Numerical simulations for comparison of $ T_1 $ and $ T_2 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. Then $ u_{mean} = 0.0301 $. When $ s = 0.1 $, we obtain $ T_1 = 13.4364> 13.2452 = T_2 $ by numerical computations on (4)
Figure 4.  Numerical simulations for comparison of $ T_1 $ and $ T_2 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. When the initial values are $ (1.4, 1.4, 1.4, 1.4) $, $ (3.4, 3.4, 3.4, 3.4) $, $ (4, 4, 4, 4) $, $ (7, 7, 7, 7) $ and $ (8, 8, 8, 8) $, numerical computations on (4) show that all solutions converge to the same equilibrium $ (0.1549, 4.4737, 0.0002, 8.9457) $, while the component $ v_1(t) $ is displayed in this figure
[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[3]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[6]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[7]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[8]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[9]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[14]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[15]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[19]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[20]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (266)
  • HTML views (294)
  • Cited by (3)

[Back to Top]