\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic population abundance of a two-patch system with asymmetric diffusion

  • * Corresponding author: Donald DeAngelis

    * Corresponding author: Donald DeAngelis

The second author is supported by NSF grant of China (11571382)

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • This paper considers a two-patch system with asymmetric diffusion rates, in which exploitable resources are included. By using dynamical system theory, we exclude periodic solution in the one-patch subsystem and demonstrate its global dynamics. Then we exhibit uniform persistence of the two-patch system and demonstrate uniqueness of the positive equilibrium, which is shown to be asymptotically stable when the diffusion rates are sufficiently large. By a thorough analysis on the asymptotic population abundance, we demonstrate necessary and sufficient conditions under which the asymmetric diffusion rates can lead to the result that total equilibrium population abundance in heterogeneous environments is larger than that in heterogeneous/homogeneous environments with no diffusion, which is not intuitive. Our result extends previous work to the situation of asymmetric diffusion and provides new insights. Numerical simulations confirm and extend our results.

    Mathematics Subject Classification: Primary: 34C37, 92D25; Secondary: 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase-plane diagram of system (6). Stable equilibrium is displayed by solid circle. Vector fields are shown by gray arrows. Isoclines of nutrient $ u_1 $ and consumer $ v_1 $ are represented by red and blue lines, respectively. According to parameter values in experiments by Zhang et al. (2017), let $ N_{01} = 0.02, r = 0.1, k_1 = 0.1, \gamma = 0.01, g_1 = 0.0001 $. Then $ u_{01} = 0.2 < r^2/g_1 $. Numerical simulations show that all positive solutions of (6) converge to equilibrium $ E_1^+ $, which is consistent with Theorem 2.1(ⅱ)

    Figure 2.  Numerical simulations for comparison of $ T_1 $ and $ T_0 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. When $ s = 0.1 $, we obtain $ T_1 = 11.9531 >8.5095 = T_0 $ by numerical computations on (4)

    Figure 3.  Numerical simulations for comparison of $ T_1 $ and $ T_2 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. Then $ u_{mean} = 0.0301 $. When $ s = 0.1 $, we obtain $ T_1 = 13.4364> 13.2452 = T_2 $ by numerical computations on (4)

    Figure 4.  Numerical simulations for comparison of $ T_1 $ and $ T_2 $ when $ s $ varies, Let $ r = 0.1, u_{01} = 0.06, u_{02} = 0.0002, g_1 = 0.001, g_2 = 0.0005, D = 100 $. When the initial values are $ (1.4, 1.4, 1.4, 1.4) $, $ (3.4, 3.4, 3.4, 3.4) $, $ (4, 4, 4, 4) $, $ (7, 7, 7, 7) $ and $ (8, 8, 8, 8) $, numerical computations on (4) show that all solutions converge to the same equilibrium $ (0.1549, 4.4737, 0.0002, 8.9457) $, while the component $ v_1(t) $ is displayed in this figure

  • [1] R. ArditiN. Perrin and H. Saiah, Functional responses and heterogeneities: An experimental test with cladocerans, Oikos, 60 (1991), 69-75.  doi: 10.2307/3544994.
    [2] R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551. 
    [3] R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.
    [4] R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.
    [5] G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.
    [6] B. J. CardinaleM. A. PalmerC. M. SwanS. Brooks and N. Leroy Poff, The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem, Ecology, 83 (2002), 412-422. 
    [7] C. Cosner, Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58 (1996), 207-246.  doi: 10.1007/BF02458307.
    [8] D. L. DeAngelisW. Ni and B. Zhang, Dispersal and heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.
    [9] D. L. DeAngelisW. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453. 
    [10] J. Hofbauer and  K. SigmundEvolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.
    [11] V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.
    [12] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.
    [13] J. C. Poggiale and P. Auger, Fast Oscillating Migrations in a predator-prey model, Math. Models Methods Appl. Sci., 6 (1996), 217-226.  doi: 10.1142/S0218202596000559.
    [14] J. C. Poggiale, From behavioral to population level: Growth and competition, Aggregation and emergence in population dynamics,, Math. Comput. Modelling, 27 (1998), 41-49.  doi: 10.1016/S0895-7177(98)00004-1.
    [15] J. C. PoggialeP. AugerD. NeriniC. Mante and F. Gilbert, Global production increased by spatial heterogeneity in a population dynamics model, Acta, Biotheor, 53 (2005), 359-370. 
    [16] A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theoret. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.
    [17] Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37. 
    [18] B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW. -M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.
    [19] B. ZhangX. LiuD. L. DeAngelisW. -M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.
  • 加载中
Open Access Under a Creative Commons license

Figures(4)

SHARE

Article Metrics

HTML views(1872) PDF downloads(518) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return