Advanced Search
Article Contents
Article Contents

Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation

  • * Corresponding author: Tobias Weth

    * Corresponding author: Tobias Weth

Dedicated to Wei-Ming Ni with admiration and appreciation

Abstract Full Text(HTML) Related Papers Cited by
  • We study the spectral asymptotics of nodal (i.e., sign-changing) solutions of the problem

    $ \begin{equation*} (H) \qquad \qquad \left \{ \begin{aligned} -\Delta u & = |x|^\alpha |u|^{p-2}u&&\qquad \text{in $ {\bf B}$,}\\ u& = 0&&\qquad \text{on $\partial {\bf B}$,} \end{aligned} \right. \end{equation*} $

    in the unit ball $ {\bf B} \subset \mathbb{R}^N,N\geq 3 $, $ p>2 $ in the limit $ \alpha \to +\infty $. More precisely, for a given positive integer $ K $, we derive asymptotic $ C^1 $-expansions for the negative eigenvalues of the linearization of the unique radial solution $ u_\alpha $ of $ (H) $ with precisely $ K $ nodal domains and $ u_\alpha(0)>0 $. As an application, we derive the existence of an unbounded sequence of bifurcation points on the radial solution branch $ \alpha \mapsto (\alpha,u_\alpha) $ which all give rise to bifurcation of nonradial solutions whose nodal sets remain homeomorphic to a disjoint union of concentric spheres.

    Mathematics Subject Classification: 35J25, 35B32, 35P15.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Amadori and F. Gladiali, Bifurcation and symmetry breaking for the Hénon equation, Adv. Differential Equations, 19 (2014), 755-782. 
    [2] A. Amadori and F. Gladiali, On a singular eigenvalue problem and its applications in computing the Morse index of solutions to semilinear PDE's, preprint, arXiv: 1805.04321
    [3] A. Amadori and F. Gladiali, Asymptotic profile and Morse index of nodal radial solutions to the Hénon problem, preprint, arXiv: 1810.11046
    [4] J. Byeon and Z.-Q. Wang, On the Hénon equation: Asymptotic profile of ground states, Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 803-828.  doi: 10.1016/j.anihpc.2006.04.001.
    [5] J. Byeon and Z.-Q. Wang, On the Hénon equation: Asymptotic profile of ground states, Ⅱ, J. Differential Equations, 216 (2005), 78-108.  doi: 10.1016/j.jde.2005.02.018.
    [6] D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.  doi: 10.1016/S0022-247X(02)00292-5.
    [7] E. N. DancerF. Gladiali and M. Grossi, On the Hardy-Sobolev equation, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 299-336.  doi: 10.1017/S0308210516000135.
    [8] E. N. Dancer and J. C. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscripta Math., 123 (2007), 493-511.  doi: 10.1007/s00229-007-0110-6.
    [9] F. GladialiM. Grossi and S. L. Neves, Nonradial solutions for the Hénon equation in $\mathbb{R}^N$, Adv. Math., 249 (2013), 1-36.  doi: 10.1016/j.aim.2013.07.022.
    [10] F. GladialiM. GrossiF. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. Partial Differential Equations, 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.
    [11] M. Hénon, Numerical Experiments on The Stability of Spherical Stellar Systems, Astronomy and Astrophysics, 1973.
    [12] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Applied Mathematical Sciences, Springer-Verlag, New York, 2004. doi: 10.1007/b97365.
    [13] H. Kielhöfer, A bifurcation theorem for potential operators, J. Funct. Anal., 77 (1988), 1-8.  doi: 10.1016/0022-1236(88)90073-0.
    [14] Z. Lou, T. Weth and Z. Zhang, Symmetry breaking via Morse index for equations and systems of Hénon-Schrödinger type, Z. Angew. Math. Phys., 70 (2019), Art. 35, 19 pp, arXiv: 1803.02712. doi: 10.1007/s00033-019-1080-8.
    [15] E. Moreira dos Santos and F. Pacella, Morse index of radial nodal solutions of Hénon type equations in dimension two, Commun. Contemp. Math., 19 (2017), 1650042, 16 pp. doi: 10.1142/S0219199716500425.
    [16] K. Nagasaki, Radial solutions for $\Delta u + |x|^l |u|^{p-1}u = 0$ on the unit ball in $\mathbb{R}^n$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 211-232. 
    [17] Y. Naito, Bounded solutions with prescribed numbers of zeros for the Emden-Fowler differential equation, Hiroshima Math. J., 24 (1994), 177-220.  doi: 10.32917/hmj/1206128140.
    [18] W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.  doi: 10.1512/iumj.1982.31.31056.
    [19] A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97.  doi: 10.1007/s00209-006-0060-9.
    [20] E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326.  doi: 10.1007/s00526-004-0302-9.
    [21] D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations, 18 (2003), 57-75.  doi: 10.1007/s00526-002-0180-y.
    [22] D. SmetsM. Willem and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.  doi: 10.1142/S0219199702000725.
    [23] E. Yanagida, Structure of radial solutions to $\Delta u + K(|x|)|u|^{p-1}u=0$ in $\mathbb{R}^N$, SIAM J. Math. Anal., 27 (1996), 997-1014.  doi: 10.1137/0527053.
  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views(1896) PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint