June  2020, 40(6): 3375-3394. doi: 10.3934/dcds.2020033

Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity

Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

* Corresponding author: Yoshio Yamada

Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday
1 Partially supported by Waseda University Grant for Special Research Project (2018K-203, 2018B-103) and Grant-in-Aid for Early-Career Scientists (19K14602).
2 Partially supported by Grant-in-Aid for Scientific Research (C) 16K05244.
** Current address: Department of Mathematical and Physical Sciences, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.

Received  January 2019 Revised  August 2019 Published  October 2019

This paper deals with a free boundary problem for a reaction-diffusion equation in a one-dimensional interval whose boundary consists of a fixed end-point and a moving one. We put homogeneous Dirichlet condition at the fixed boundary, while we assume that the dynamics of the moving boundary is governed by the Stefan condition. Such free boundary problems have been studied by a lot of researchers. We will take a nonlinear reaction term of positive bistable type which exhibits interesting properties of solutions such as multiple spreading phenomena. In fact, it will be proved that large-time behaviors of solutions can be classified into three types; vanishing, small spreading and big spreading. Some sufficient conditions for these behaviors are also shown. Moreover, for two types of spreading, we will give sharp estimates of spreading speed of each free boundary and asymptotic profiles of each solution.

Citation: Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033
References:
[1]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[2]

G. BuntingY. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[3]

W. Choi and I. Ahn, Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314.  doi: 10.1016/j.jmaa.2019.06.027.  Google Scholar

[4]

W. DingR. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779.  doi: 10.1016/j.jde.2017.04.013.  Google Scholar

[5]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405; SIAM J. Math. Anal., 45 (2013), 1995–1996 (erratum). doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. DuB. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed, and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279-312.  doi: 10.4171/JEMS/198.  Google Scholar

[9]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[10]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[11]

Y. KanekoK. Oeda and Y. Yamada, Remarks on spreading and vanishing for free boundary problems of some reaction-diffusion equations, Funkcial. Ekvac., 57 (2014), 449-465.  doi: 10.1619/fesi.57.449.  Google Scholar

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[13]

Y. Kaneko and Y. Yamada, Spreading speed and profiles of solutions to a free boundary problem with Dirichlet boundary conditions, J. Math. Anal. Appl., 465 (2018), 1159-1175.  doi: 10.1016/j.jmaa.2018.05.056.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary, J. Differential Equations, 265 (2018), 1000-1043.  doi: 10.1016/j.jde.2018.03.026.  Google Scholar

[15]

Y. Kaneko, H. Matsuzawa and Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of reaction-diffusion equation with positive bistable nonlinearity, to appear in SIAM J. Math. Anal. Google Scholar

[16]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[17]

C. LeiH. MatsuzawaR. Peng and M. Zhou, Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type, J. Differential Equations, 265 (2018), 2897-2920.  doi: 10.1016/j.jde.2018.04.053.  Google Scholar

[18]

X. Liu and B. Lou, Asymptotic behavior of solutions to diffusion problems with Robin and free boundary conditions, Math. Model. Nat. Phenom., 8 (2013), 18-32.  doi: 10.1051/mmnp/20138303.  Google Scholar

[19]

X. Liu and B. Lou, On a reaction-diffusion equation with Robin and free boundary conditions, J. Differential Equations, 259 (2015), 423-453.  doi: 10.1016/j.jde.2015.02.012.  Google Scholar

[20]

B. Lou, Convergence in time-periodic quasilinear parabolic equations in one space dimension, J. Differential Equations, 265 (2018), 3952-3969.  doi: 10.1016/j.jde.2018.05.025.  Google Scholar

[21]

D. LudwigD. G. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.  doi: 10.1007/BF00276310.  Google Scholar

[22]

H. Matsuzawa, A free boundary problem for the Fisher-KPP equation with a given moving boundary, Commun. Pure Appl. Anal., 17 (2018), 1821-1852.  doi: 10.3934/cpaa.2018087.  Google Scholar

[23]

D. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

[24]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[25]

N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Differential Equations, 56 (2017), Art. 61, 36 pp. doi: 10.1007/s00526-017-1165-1.  Google Scholar

[26]

R. H. WangL. Wang and Z. C. Wang, Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math. Anal. Appl., 467 (2018), 1233-1257.  doi: 10.1016/j.jmaa.2018.07.065.  Google Scholar

[27]

Y. Zhao and M. X. Wang, A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.  doi: 10.1007/s10884-017-9571-9.  Google Scholar

show all references

References:
[1]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[2]

G. BuntingY. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[3]

W. Choi and I. Ahn, Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314.  doi: 10.1016/j.jmaa.2019.06.027.  Google Scholar

[4]

W. DingR. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779.  doi: 10.1016/j.jde.2017.04.013.  Google Scholar

[5]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405; SIAM J. Math. Anal., 45 (2013), 1995–1996 (erratum). doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. DuB. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed, and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279-312.  doi: 10.4171/JEMS/198.  Google Scholar

[9]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[10]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[11]

Y. KanekoK. Oeda and Y. Yamada, Remarks on spreading and vanishing for free boundary problems of some reaction-diffusion equations, Funkcial. Ekvac., 57 (2014), 449-465.  doi: 10.1619/fesi.57.449.  Google Scholar

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[13]

Y. Kaneko and Y. Yamada, Spreading speed and profiles of solutions to a free boundary problem with Dirichlet boundary conditions, J. Math. Anal. Appl., 465 (2018), 1159-1175.  doi: 10.1016/j.jmaa.2018.05.056.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary, J. Differential Equations, 265 (2018), 1000-1043.  doi: 10.1016/j.jde.2018.03.026.  Google Scholar

[15]

Y. Kaneko, H. Matsuzawa and Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of reaction-diffusion equation with positive bistable nonlinearity, to appear in SIAM J. Math. Anal. Google Scholar

[16]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[17]

C. LeiH. MatsuzawaR. Peng and M. Zhou, Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type, J. Differential Equations, 265 (2018), 2897-2920.  doi: 10.1016/j.jde.2018.04.053.  Google Scholar

[18]

X. Liu and B. Lou, Asymptotic behavior of solutions to diffusion problems with Robin and free boundary conditions, Math. Model. Nat. Phenom., 8 (2013), 18-32.  doi: 10.1051/mmnp/20138303.  Google Scholar

[19]

X. Liu and B. Lou, On a reaction-diffusion equation with Robin and free boundary conditions, J. Differential Equations, 259 (2015), 423-453.  doi: 10.1016/j.jde.2015.02.012.  Google Scholar

[20]

B. Lou, Convergence in time-periodic quasilinear parabolic equations in one space dimension, J. Differential Equations, 265 (2018), 3952-3969.  doi: 10.1016/j.jde.2018.05.025.  Google Scholar

[21]

D. LudwigD. G. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.  doi: 10.1007/BF00276310.  Google Scholar

[22]

H. Matsuzawa, A free boundary problem for the Fisher-KPP equation with a given moving boundary, Commun. Pure Appl. Anal., 17 (2018), 1821-1852.  doi: 10.3934/cpaa.2018087.  Google Scholar

[23]

D. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

[24]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[25]

N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Differential Equations, 56 (2017), Art. 61, 36 pp. doi: 10.1007/s00526-017-1165-1.  Google Scholar

[26]

R. H. WangL. Wang and Z. C. Wang, Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math. Anal. Appl., 467 (2018), 1233-1257.  doi: 10.1016/j.jmaa.2018.07.065.  Google Scholar

[27]

Y. Zhao and M. X. Wang, A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.  doi: 10.1007/s10884-017-9571-9.  Google Scholar

Figure 1.  The phase plane of $ \rm(SP) $
[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (239)
  • HTML views (234)
  • Cited by (0)

Other articles
by authors

[Back to Top]