doi: 10.3934/dcds.2020034

A Hopf lemma and regularity for fractional $ p $-Laplacians

1. 

Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, USA

2. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200234, China

3. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

* Corresponding author: Congming Li

Received  January 2019 Revised  May 2019 Published  October 2019

Fund Project: The first author was partially supported by the Simons Foundation Collaboration Grant for Mathematicians (245486), and the second author was partially supported by NSFC (11571233)

In this paper, we study qualitative properties of the fractional $ p $-Laplacian. Specifically, we establish a Hopf type lemma for positive weak super-solutions of the fractional $ p- $Laplacian equation with Dirichlet condition. Moreover, an optimal condition is obtained to ensure $ (-\triangle)_p^s u\in C^1(\mathbb{R}^n) $ for smooth functions $ u $.

Citation: Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020034
References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropicmodel for phase transitions Ⅰ: The optimal profile problem, Math. Ann., 310 (1998), 527-560.  doi: 10.1007/s002080050159.  Google Scholar

[2]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.  Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[4]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher H$\ddot{o}$der regularity for the fractional p-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[6]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[7]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[10]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[11]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[12]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp. doi: 10.1142/S0129167X16500646.  Google Scholar

[15]

W. Chen, Y. Li and P. Ma, The Fractional Laplacian, A book to be published by World Scientific Publishing C, 2019. doi: 10.1142/10550.  Google Scholar

[16]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[17]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[18]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[19]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[20]

M. M. Fall and S. Jarohs, Overdetermined problems with fractional Laplacian, ESAIM Control Optim. Calc. Var., 21 (2015), 924-938.  doi: 10.1051/cocv/2014048.  Google Scholar

[21]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.  doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[22]

A. IannizzottoS. Mosconi and M. Squassina, Global H$\ddot{o}$der regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.  Google Scholar

[23]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var. Partial Differential Equations, 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[24]

L. Jin and Y. Li, A Hopf's Lemma and the Boundary Regularity for the Fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1477-1495.  doi: 10.3934/dcds.2019063.  Google Scholar

[25]

C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.  Google Scholar

[26]

S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem., 7 (2016), 147-164.   Google Scholar

[27]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[28]

X. Ros-Oton and E. Valdinoci, The Dirichlet problem for nonlocal operators with singular kernels: convex and nonconvex domains, Adv. Math., 288 (2016), 732-790.  doi: 10.1016/j.aim.2015.11.001.  Google Scholar

[29]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[30]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[31]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial Differential Equations, 34 (2009), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[32]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[33]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

show all references

References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropicmodel for phase transitions Ⅰ: The optimal profile problem, Math. Ann., 310 (1998), 527-560.  doi: 10.1007/s002080050159.  Google Scholar

[2]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.  Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[4]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher H$\ddot{o}$der regularity for the fractional p-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[6]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[7]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[10]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[11]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[12]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp. doi: 10.1142/S0129167X16500646.  Google Scholar

[15]

W. Chen, Y. Li and P. Ma, The Fractional Laplacian, A book to be published by World Scientific Publishing C, 2019. doi: 10.1142/10550.  Google Scholar

[16]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[17]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[18]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[19]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[20]

M. M. Fall and S. Jarohs, Overdetermined problems with fractional Laplacian, ESAIM Control Optim. Calc. Var., 21 (2015), 924-938.  doi: 10.1051/cocv/2014048.  Google Scholar

[21]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.  doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[22]

A. IannizzottoS. Mosconi and M. Squassina, Global H$\ddot{o}$der regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.  Google Scholar

[23]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var. Partial Differential Equations, 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[24]

L. Jin and Y. Li, A Hopf's Lemma and the Boundary Regularity for the Fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1477-1495.  doi: 10.3934/dcds.2019063.  Google Scholar

[25]

C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.  Google Scholar

[26]

S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem., 7 (2016), 147-164.   Google Scholar

[27]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[28]

X. Ros-Oton and E. Valdinoci, The Dirichlet problem for nonlocal operators with singular kernels: convex and nonconvex domains, Adv. Math., 288 (2016), 732-790.  doi: 10.1016/j.aim.2015.11.001.  Google Scholar

[29]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[30]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[31]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial Differential Equations, 34 (2009), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[32]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[33]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[1]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[2]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[3]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[4]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[5]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[6]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[7]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[8]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[9]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[10]

Anna Maria Candela, Addolorata Salvatore. Positive solutions for some generalized $ p $–Laplacian type problems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020151

[11]

Xiao Wen, Xiongping Dai. A note on a sifting-type lemma. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 879-884. doi: 10.3934/dcds.2013.33.879

[12]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[13]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[14]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[15]

Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042

[16]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[17]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[18]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[19]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[20]

Ken Shirakawa. Solvability for phase field systems of Penrose-Fife type associated with $p$-laplacian diffusions. Conference Publications, 2007, 2007 (Special) : 927-937. doi: 10.3934/proc.2007.2007.927

2018 Impact Factor: 1.143

Article outline

[Back to Top]