June  2020, 40(6): 3997-4017. doi: 10.3934/dcds.2020037

On space-time periodic solutions of the one-dimensional heat equation

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

2. 

Department of Financial Engineering, Providence University, Taichung 43301, Taiwan

Received  February 2019 Published  October 2019

We look for solutions
$ u\left( x,t\right) $
of the one-dimensional heat equation
$ u_{t} = u_{xx} $
which are space-time periodic, i.e. they satisfy the property
$ u\left( x+a,t+b\right) = u\left( x,t\right) $
for all
$ \left( x,t\right) \in\left( -\infty,\infty\right) \times\left( -\infty,\infty\right), $
and derive their Fourier series expansions. Here
$ a\geq0,\ b\geq 0 $
are two constants with
$ a^{2}+b^{2}>0. $
For general equation of the form
$ u_{t} = u_{xx}+Au_{x}+Bu, $
where
$ A,\ B $
are two constants, we also have similar results. Moreover, we show that non-constant bounded periodic solution can occur only when
$ B>0 $
and is given by a linear combination of
$ \cos\left( \sqrt{B}\left( x+At\right) \right) $
and
$ \sin\left( \sqrt{B}\left( x+At\right) \right). $
Citation: Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037
References:
[1]

J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, 23. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. doi: 10.1017/CBO9781139086967.  Google Scholar

[2] D. V. Widder, The Heat Equation, Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London, 1975.   Google Scholar

show all references

References:
[1]

J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, 23. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. doi: 10.1017/CBO9781139086967.  Google Scholar

[2] D. V. Widder, The Heat Equation, Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London, 1975.   Google Scholar
[1]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[10]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[11]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[12]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[13]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[14]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[15]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[19]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[20]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (175)
  • HTML views (267)
  • Cited by (0)

Other articles
by authors

[Back to Top]