
- Previous Article
- DCDS Home
- This Issue
-
Next Article
Refined regularity and stabilization properties in a degenerate haptotaxis system
Simulation of post-hurricane impact on invasive species with biological control management
1. | Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and, Water Conservation and Ecological Restoration, Nanjing 210037, China |
2. | Department of Biology, University of Miami, Coral Gables, Florida 33124, USA |
3. | USDA-ARS Invasive Plant Research Lab, 3225 College Avenue, Fort Lauderdale, Florida 33314, USA |
4. | US Geological Survey, Wetlands and Aquatic Research Center, Davie, Florida 33314, USA |
5. | Department of Environmental Science and Policy, University of California, Davis, Davis, California 95616, USA |
Understanding the effects of hurricanes and other large storms on ecological communities and the post-event recovery in these communities can guide management and ecosystem restoration. This is particularly important for communities impacted by invasive species, as the hurricane may affect control efforts. Here we consider the effect of a hurricane on tree communities in southern Florida that has been invaded by Melaleuca quinquevervia (melaleuca), an invasive Australian tree. Biological control agents were introduced starting in the 1990s and are reducing melaleuca in habitats where they are established. We used size-structured matrix modeling as a tool to project the continued possible additional effects of a hurricane on a pure stand of melaleuca that already had some level of biological control. The model results indicate that biological control could suppress or eliminate melaleuca within decades. A hurricane that does severe damage to the stand may accelerate the trend toward elimination of melaleuca with both strong and moderate biological control. However, if the biological control is weak, the stand is resilient to all but extremely severe hurricane damage. Although only a pure melaleuca stand was simulated in this study, other plants, such as natives, are likely to accelerate the decline of melaleuca due to competition. Our model provides a new tool to simulate post-hurricanes effect on invasive species and highlights the essential role that biological control has played on invasive species management.
References:
[1] |
P. J. Bellingham, E. V. J. Tanner and J. R. Healey,
Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests, Journal of Vegetation Science, 16 (2005), 675-684.
|
[2] |
P. J. Bellingham, E. V. J. Tanner, P. H. Martin, J. R. Healey and O. R. Burge,
Endemic trees in a tropical biodiversity hotspot imperilled by an invasive tree, Biological Conservation, 217 (2018), 47-53.
doi: 10.1016/j.biocon.2017.10.028. |
[3] |
K. K. Bohn, P. J. Minogue and E. C. Pietersen,
Control of invasive Japanese climbing fern (Lygodium japonicum) and response of native ground cover during restoration of a disturbed longleaf pine ecosystem, Ecological Restoration, 29 (2011), 346-356.
|
[4] |
H. Bugmann,
A review of forest gap models, Climate Change, 51 (2001), 259-305.
|
[5] |
T. D. Center, P. D. Pratt, P. W. Tipping, M. B. Rayamajhi, T. K. Van and S. A. Wineriter, et
al., Field colonization, population growth, and dispersal of Boreioglycaspis melaleucae Moore,
a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) Blake, Biological
Control, 39 (2006), 363–374. |
[6] |
T. D. Center, M. F. Purcell, P. D. Pratt, M. B. Rayamajhi, P. W. Tipping, S. A. Wright,
et al., Biological control of Melaleuca quinquenervia: An Everglades invader, Biocontrol, 57
(2012), 151–165. |
[7] |
T. D. Center, T. K. Van, M. Rayachhetry, G. R. Buckingham, F. A. Dray and S. A. Wineriter,
et al., Field colonization of the melaleuca snout beetle (Oxyops vitiosa) in south Florida,
Biological Control, 19 (2000), 112–123. |
[8] |
C. M. D'Antonio, N. E. Jackson, C. C. Horvitz and R. Hedberg,
Invasive plants in wildland ecosystems: Merging the study of invasion processes with management needs, Frontiers in Ecology and the Environment, 10 (2004), 513-521.
|
[9] |
J. W. Day, D. F. Boesch, E. J. Clairain, G. P. Kemp, S. B. Laska and W. J. Mitsch, et al., Restoration of the mississippi delta: Lessons from hurricanes katrina and rita, Science, 315
(2007), 1679–1684.
doi: 10.1126/science.1137030. |
[10] |
D. B. Flynn, M. Uriarte, T. Crk, J. B. Pascarella, J. K. Zimmerman and T. M. Aide, et al,
Hurricane disturbance alters secondary forest recovery in puerto rico, Biotropica, 42 (2010),
149–157.
doi: 10.1111/j.1744-7429.2009.00581.x. |
[11] |
T. K. Henkel, J. Q. Chambers and D. A. Baker,
Delayed tree mortality and Chinese tallow (Triadica sebifera) population explosion in a Louisiana bottomland hardwood forest following Hurricane Katrina, Forest Ecology and Management, 378 (2017), 222-232.
|
[12] |
C. C. Horvitz, J. B. Pascarella, S. McMann, A. Freedman and R. H. Hoffstetter,
Functional roles of invasive non-indigenous plants in hurricane-affected subtropical hardwood forests, Ecological Applications, 8 (1998), 947-974.
|
[13] |
N. Ishshalom, L. D. L. Sternberg, M. Ross, J. O'brien and L. Flynn,
Water Utilization of Tropical Hardwood Hammocks of the Lower Florida Keys, Oecologia, 92 (1992), 108-112.
|
[14] |
D. M. Lieurance,
Biomass allocation of the invasive tree Acacia auriculiformis and refoliation following hurricane-force winds, Journal of the Torrey Botanical Society, 134 (2007), 389-397.
|
[15] |
S. M. Louda, Negative ecological effects of the musk thistle biological control agent, Rhinocyllus conicus, Nontarget Effects of Biological Control, Springer, 2000,215–243. |
[16] |
L. McAlpine and S. Porder,
Evaluation of a large-scale invasive plant species herbicide control program in the Berkshire Taconic Plateau, Massachusetts, USA, Conservation Evidence, 6 (2006), 117-123.
|
[17] |
P. D. Pratt, M. B. Rayamajhi, T. K. Van, T. D. Center and P. W. Tipping,
Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quinquenervia, Ecological Entomology, 30 (2005), 316-326.
|
[18] |
M. B. Rayamajhi, P. D. Pratt, T. D. Center, P. W. Tipping and T. K. Van,
A review of forest gap models, Climate Change, 51 (2001), 259-305.
|
[19] |
M. B. Rayamajhi, T. K. Van, P. D. Pratt, T. D. Center and P. W. Tipping,
Melaleuca quinquenervia dominated forests in Florida: Analyses of natural-enemy impacts on stand dynamics, Plant Ecology, 192 (2007), 119-132.
|
[20] |
L. Sevillano, The Effects of Biological Control Agents on Population Growth and Spread of Melaleuca Quinquenervia, Ph.D thesis, University of Miami, 2010. |
[21] |
L. Sevillano, C. C. Horvitz and P. D. Pratt,
Natural enemy density and soil type influence growth and survival of Melaleuca quinquenervia seedlings, Biol Control., 53 (2010), 168-177.
doi: 10.1016/j.biocontrol.2010.01.006. |
[22] |
A. A. Sher, H. El Waer, E. Gonzalez, R. Anderson, A. L. Henry and R. Bierdon, et al.,
Native species recovery after reduction of an invasive tree by biological control with and
without active removal, Ecological Engineering, 111 (2018), 167–175.
doi: 10.1016/j.ecoleng.2017.11.018. |
[23] |
J. Snitzer, D. Boucher and K. Kyde,
Response of exotic invasive plant species to forest damage caused by Hurricane Isabel. Hurricane Isabel in perspective, Chesapeake Research Consortium Publication, 1 (2005), 5-160.
|
[24] |
J. Thompson, A. E. Lugo and J. Thomlinson,
Land use history, hurricane disturbance, and the fate of introduced species in a subtropical wet forest in Puerto Rico, Plant Ecology, 192 (2007), 289-301.
doi: 10.1007/s11258-007-9318-5. |
[25] |
P. W. Tipping, M. R. Martin, K. R. Nimmo, R. M. Pierce, M. D. Smart and E. White, et
al., Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical
biological control, Biological Control, 48 (2009), 73–78. |
[26] |
P. W. Tipping, M. R. Martin, P. D. Pratt, T. D. Center and M. B. Rayamajhi,
Suppression of growth and reproduction of an exotic invasive tree by two introduced insects, Biological Control, 44 (2008), 235-241.
doi: 10.1016/j.biocontrol.2007.08.011. |
[27] |
A. Wright and L. Skilling (eds), Herbicide Toxicity and Biological Control Agents, Proceedings of the Eighth Australian Weeds Conference, Sydney, New South Wales, Australia, 21-25 September, 1987, Weed Society of New South Wales, Australia, 1987. |
[28] |
W. M. Xi, R. K. Peet and D. L. Urban,
Changes in forest structure, species diversity and spatial pattern following hurricane disturbance in a Piedmont North Carolina forest, USA, Journal of Plant Ecology, 1 (2008), 43-57.
doi: 10.1093/jpe/rtm003. |
[29] |
B. Zhang, D. L. DeAngelis, M. B. Rayamajhi and D. Botkin,
Modeling the long-term effects of introduced herbivores on the spread of an invasive tree, Landscape Ecology, 32 (2017), 1147-1161.
doi: 10.1007/s10980-017-0519-6. |
[30] |
B. Zhang, X. Liu, D. L. DeAngelis, L. Zhai, M. B. Rayamajhi and S. Ju,
Modeling the compensatory response of an invasive tree to specialist insect herbivory, Biological Control, 117 (2018), 128-136.
doi: 10.1016/j.biocontrol.2017.11.002. |
[31] |
J. K. Zimmerman, W. M. Pulliam, D. J. Lodge, V. Quinonesorfila, N. Fetcher and S. Guzmangrajales, et al., Nitrogen immobilization by decomposing woody debris and the recovery
of tropical wet forest from hurricane damage, Oikos, 72 (1995), 314–322.
doi: 10.2307/3546116. |
[32] |
F. A. Dray, Jr, B. C. Bennett, and T. D. Center, Invasion history of Melaleuca quinquenervia
(Cav.) S.T. Blake in Florida, Castanea, 71 (2006), 210–225.
doi: 10.2179/05-27.1. |
show all references
References:
[1] |
P. J. Bellingham, E. V. J. Tanner and J. R. Healey,
Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests, Journal of Vegetation Science, 16 (2005), 675-684.
|
[2] |
P. J. Bellingham, E. V. J. Tanner, P. H. Martin, J. R. Healey and O. R. Burge,
Endemic trees in a tropical biodiversity hotspot imperilled by an invasive tree, Biological Conservation, 217 (2018), 47-53.
doi: 10.1016/j.biocon.2017.10.028. |
[3] |
K. K. Bohn, P. J. Minogue and E. C. Pietersen,
Control of invasive Japanese climbing fern (Lygodium japonicum) and response of native ground cover during restoration of a disturbed longleaf pine ecosystem, Ecological Restoration, 29 (2011), 346-356.
|
[4] |
H. Bugmann,
A review of forest gap models, Climate Change, 51 (2001), 259-305.
|
[5] |
T. D. Center, P. D. Pratt, P. W. Tipping, M. B. Rayamajhi, T. K. Van and S. A. Wineriter, et
al., Field colonization, population growth, and dispersal of Boreioglycaspis melaleucae Moore,
a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) Blake, Biological
Control, 39 (2006), 363–374. |
[6] |
T. D. Center, M. F. Purcell, P. D. Pratt, M. B. Rayamajhi, P. W. Tipping, S. A. Wright,
et al., Biological control of Melaleuca quinquenervia: An Everglades invader, Biocontrol, 57
(2012), 151–165. |
[7] |
T. D. Center, T. K. Van, M. Rayachhetry, G. R. Buckingham, F. A. Dray and S. A. Wineriter,
et al., Field colonization of the melaleuca snout beetle (Oxyops vitiosa) in south Florida,
Biological Control, 19 (2000), 112–123. |
[8] |
C. M. D'Antonio, N. E. Jackson, C. C. Horvitz and R. Hedberg,
Invasive plants in wildland ecosystems: Merging the study of invasion processes with management needs, Frontiers in Ecology and the Environment, 10 (2004), 513-521.
|
[9] |
J. W. Day, D. F. Boesch, E. J. Clairain, G. P. Kemp, S. B. Laska and W. J. Mitsch, et al., Restoration of the mississippi delta: Lessons from hurricanes katrina and rita, Science, 315
(2007), 1679–1684.
doi: 10.1126/science.1137030. |
[10] |
D. B. Flynn, M. Uriarte, T. Crk, J. B. Pascarella, J. K. Zimmerman and T. M. Aide, et al,
Hurricane disturbance alters secondary forest recovery in puerto rico, Biotropica, 42 (2010),
149–157.
doi: 10.1111/j.1744-7429.2009.00581.x. |
[11] |
T. K. Henkel, J. Q. Chambers and D. A. Baker,
Delayed tree mortality and Chinese tallow (Triadica sebifera) population explosion in a Louisiana bottomland hardwood forest following Hurricane Katrina, Forest Ecology and Management, 378 (2017), 222-232.
|
[12] |
C. C. Horvitz, J. B. Pascarella, S. McMann, A. Freedman and R. H. Hoffstetter,
Functional roles of invasive non-indigenous plants in hurricane-affected subtropical hardwood forests, Ecological Applications, 8 (1998), 947-974.
|
[13] |
N. Ishshalom, L. D. L. Sternberg, M. Ross, J. O'brien and L. Flynn,
Water Utilization of Tropical Hardwood Hammocks of the Lower Florida Keys, Oecologia, 92 (1992), 108-112.
|
[14] |
D. M. Lieurance,
Biomass allocation of the invasive tree Acacia auriculiformis and refoliation following hurricane-force winds, Journal of the Torrey Botanical Society, 134 (2007), 389-397.
|
[15] |
S. M. Louda, Negative ecological effects of the musk thistle biological control agent, Rhinocyllus conicus, Nontarget Effects of Biological Control, Springer, 2000,215–243. |
[16] |
L. McAlpine and S. Porder,
Evaluation of a large-scale invasive plant species herbicide control program in the Berkshire Taconic Plateau, Massachusetts, USA, Conservation Evidence, 6 (2006), 117-123.
|
[17] |
P. D. Pratt, M. B. Rayamajhi, T. K. Van, T. D. Center and P. W. Tipping,
Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quinquenervia, Ecological Entomology, 30 (2005), 316-326.
|
[18] |
M. B. Rayamajhi, P. D. Pratt, T. D. Center, P. W. Tipping and T. K. Van,
A review of forest gap models, Climate Change, 51 (2001), 259-305.
|
[19] |
M. B. Rayamajhi, T. K. Van, P. D. Pratt, T. D. Center and P. W. Tipping,
Melaleuca quinquenervia dominated forests in Florida: Analyses of natural-enemy impacts on stand dynamics, Plant Ecology, 192 (2007), 119-132.
|
[20] |
L. Sevillano, The Effects of Biological Control Agents on Population Growth and Spread of Melaleuca Quinquenervia, Ph.D thesis, University of Miami, 2010. |
[21] |
L. Sevillano, C. C. Horvitz and P. D. Pratt,
Natural enemy density and soil type influence growth and survival of Melaleuca quinquenervia seedlings, Biol Control., 53 (2010), 168-177.
doi: 10.1016/j.biocontrol.2010.01.006. |
[22] |
A. A. Sher, H. El Waer, E. Gonzalez, R. Anderson, A. L. Henry and R. Bierdon, et al.,
Native species recovery after reduction of an invasive tree by biological control with and
without active removal, Ecological Engineering, 111 (2018), 167–175.
doi: 10.1016/j.ecoleng.2017.11.018. |
[23] |
J. Snitzer, D. Boucher and K. Kyde,
Response of exotic invasive plant species to forest damage caused by Hurricane Isabel. Hurricane Isabel in perspective, Chesapeake Research Consortium Publication, 1 (2005), 5-160.
|
[24] |
J. Thompson, A. E. Lugo and J. Thomlinson,
Land use history, hurricane disturbance, and the fate of introduced species in a subtropical wet forest in Puerto Rico, Plant Ecology, 192 (2007), 289-301.
doi: 10.1007/s11258-007-9318-5. |
[25] |
P. W. Tipping, M. R. Martin, K. R. Nimmo, R. M. Pierce, M. D. Smart and E. White, et
al., Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical
biological control, Biological Control, 48 (2009), 73–78. |
[26] |
P. W. Tipping, M. R. Martin, P. D. Pratt, T. D. Center and M. B. Rayamajhi,
Suppression of growth and reproduction of an exotic invasive tree by two introduced insects, Biological Control, 44 (2008), 235-241.
doi: 10.1016/j.biocontrol.2007.08.011. |
[27] |
A. Wright and L. Skilling (eds), Herbicide Toxicity and Biological Control Agents, Proceedings of the Eighth Australian Weeds Conference, Sydney, New South Wales, Australia, 21-25 September, 1987, Weed Society of New South Wales, Australia, 1987. |
[28] |
W. M. Xi, R. K. Peet and D. L. Urban,
Changes in forest structure, species diversity and spatial pattern following hurricane disturbance in a Piedmont North Carolina forest, USA, Journal of Plant Ecology, 1 (2008), 43-57.
doi: 10.1093/jpe/rtm003. |
[29] |
B. Zhang, D. L. DeAngelis, M. B. Rayamajhi and D. Botkin,
Modeling the long-term effects of introduced herbivores on the spread of an invasive tree, Landscape Ecology, 32 (2017), 1147-1161.
doi: 10.1007/s10980-017-0519-6. |
[30] |
B. Zhang, X. Liu, D. L. DeAngelis, L. Zhai, M. B. Rayamajhi and S. Ju,
Modeling the compensatory response of an invasive tree to specialist insect herbivory, Biological Control, 117 (2018), 128-136.
doi: 10.1016/j.biocontrol.2017.11.002. |
[31] |
J. K. Zimmerman, W. M. Pulliam, D. J. Lodge, V. Quinonesorfila, N. Fetcher and S. Guzmangrajales, et al., Nitrogen immobilization by decomposing woody debris and the recovery
of tropical wet forest from hurricane damage, Oikos, 72 (1995), 314–322.
doi: 10.2307/3546116. |
[32] |
F. A. Dray, Jr, B. C. Bennett, and T. D. Center, Invasion history of Melaleuca quinquenervia
(Cav.) S.T. Blake in Florida, Castanea, 71 (2006), 210–225.
doi: 10.2179/05-27.1. |






[1] |
Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101 |
[2] |
Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015 |
[3] |
Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391 |
[4] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[5] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[6] |
Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891 |
[7] |
Yunfei Lv, Yongzhen Pei, Rong Yuan. On a non-linear size-structured population model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3111-3133. doi: 10.3934/dcdsb.2020053 |
[8] |
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 |
[9] |
Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022038 |
[10] |
József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825 |
[11] |
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327 |
[12] |
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637 |
[13] |
Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015 |
[14] |
Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233 |
[15] |
Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032 |
[16] |
Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895-923. doi: 10.3934/eect.2021030 |
[17] |
Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289 |
[18] |
L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203 |
[19] |
Keith E. Howard. A size structured model of cell dwarfism. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 471-484. doi: 10.3934/dcdsb.2001.1.471 |
[20] |
Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]