We are concerned with the blow-up analysis of mean field equations. It has been proven in [
Citation: |
[1] |
S. Baraket and F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension $2$, Calc. Var. Partial Differential Equations, 6 (1998), 1-38.
doi: 10.1007/s005260050080.![]() ![]() ![]() |
[2] |
D. Bartolucci, Global bifurcation analysis of mean field equations and the Onsager microcanonical description of two-dimensional turbulence, Calc. Var. Partial Differential Equations, 58 (2019), Art. 18, 37 pp.
doi: 10.1007/s00526-018-1445-4.![]() ![]() ![]() |
[3] |
D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow up solutions to mean field equations with singular data, Comm. Partial Differential Equations, 29 (2004), 1241-1265.
doi: 10.1081/PDE-200033739.![]() ![]() ![]() |
[4] |
D. Bartolucci, C. F. Gui, A. Jevnikar and A. Moradifam, A singular sphere covering inequality: Uniqueness and symmetry of solutions to singular Liouville-type equations, Math. Ann., 374 (2019), 1883-1922.
doi: 10.1007/s00208-018-1761-1.![]() ![]() ![]() |
[5] |
D. Bartolucci, A. Jevnikar and C.-S. Lin, Non-degeneracy and uniqueness of solutions to singular mean field equations on bounded domains, J. Diff. Eq., 266 (2019), 716-741.
doi: 10.1016/j.jde.2018.07.053.![]() ![]() ![]() |
[6] |
D. Bartolucci, A. Jevnikar, Y. Lee and W. Yang, Uniqueness of bubbling solutions of mean field equations, J. Math. Pures Appl., 123 (2019), 78-126.
doi: 10.1016/j.matpur.2018.12.002.![]() ![]() ![]() |
[7] |
D. Bartolucci, A. Jevnikar, Y. Lee and W. Yang, Non degeneracy, mean field equations and the Onsager theory of 2D turbulence, Arch. Rat. Mech. Anal., 230 (2018), 397-426.
doi: 10.1007/s00205-018-1248-y.![]() ![]() ![]() |
[8] |
D. Bartolucci, A. Jevnikar, Y. Lee and W. Yang, Local uniqueness of $m$-bubbling sequences for the Gel'fand equation, Comm. Partial Differential Equations, 44 (2019), 447-466.
doi: 10.1080/03605302.2019.1581801.![]() ![]() ![]() |
[9] |
D. Bartolucci and F. De Marchis, On the Ambjorn-Olesen electroweak condensates, Jour. Math. Phys., 53 (2012), 073704, 15 pp.
doi: 10.1063/1.4731239.![]() ![]() ![]() |
[10] |
D. Bartolucci and F. De Marchis, Supercritical mean field equations on convex domains and the Onsager's statistical description of two-dimensional turbulence, Arch. Rat. Mech. Anal., 217 (2015), 525-570.
doi: 10.1007/s00205-014-0836-8.![]() ![]() ![]() |
[11] |
D. Bartolucci, F. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not. IMRN, (2011), 5625–5643.
doi: 10.1093/imrn/rnq285.![]() ![]() ![]() |
[12] |
D. Bartolucci and C.-S. Lin, Uniqueness results for mean field equations with singular data, Comm. in P. D. E., 34 (2009), 676-702.
doi: 10.1080/03605300902910089.![]() ![]() ![]() |
[13] |
D. Bartolucci and C.-S. Lin, Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter, Math. Ann., 359 (2014), 1-44.
doi: 10.1007/s00208-013-0990-6.![]() ![]() ![]() |
[14] |
D. Bartolucci, C.-S. Lin and G. Tarantello, Uniqueness and symmetry results for solutions of a mean field equation on ${\mathbb{S}}^{2}$ via a new bubbling phenomenon, Comm. Pure Appl. Math., 64 (2011), 1677-1730.
doi: 10.1002/cpa.20385.![]() ![]() ![]() |
[15] |
D. Bartolucci and A. Malchiodi, An improved geometric inequality via vanishing moments, with applications to singular Liouville equations, Comm. Math. Phys., 322 (2013), 415-452.
doi: 10.1007/s00220-013-1731-0.![]() ![]() ![]() |
[16] |
D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys., 229 (2002), 3-47.
doi: 10.1007/s002200200664.![]() ![]() ![]() |
[17] |
D. Bartolucci and G. Tarantello, Asymptotic blow-up analysis for singular Liouville type equations with applications, J. Differential Equations, 262 (2017), 3887-3931.
doi: 10.1016/j.jde.2016.12.003.![]() ![]() ![]() |
[18] |
L. Battaglia, M. Grossi and A. Pistoia, Non-uniqueness of blowing-up solutions to the Gelfand problem, Calculus of Variations and Partial Differential Equations, 58 (2019), arXiv: 1902.03484.
doi: 10.1007/s00526-019-1607-z.![]() ![]() |
[19] |
H. Brezis and F. Merle, Uniform estimates and blow-up behaviour for solutions of $-\Delta u = V(x)e^{u}$ in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
[20] |
E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description, Communications in Mathematical Physics, 143 (1992), 501-525.
doi: 10.1007/BF02099262.![]() ![]() ![]() |
[21] |
E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Ⅱ, Communications in Mathematical Physics, 174 (1995), 229-260.
doi: 10.1007/BF02099602.![]() ![]() ![]() |
[22] |
D. Cao, S. L. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 4037-4063.
doi: 10.1007/s00526-015-0930-2.![]() ![]() ![]() |
[23] |
D. Cao, E. S. Noussair and S. S. Yan, Existence and uniqueness results on single peaked solutions of a semilinear problem, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 15 (1998), 73-111.
doi: 10.1016/S0294-1449(99)80021-3.![]() ![]() ![]() |
[24] |
A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012), 409-450.
doi: 10.1016/j.jfa.2011.09.012.![]() ![]() ![]() |
[25] |
H. Chan, C.-C. Fu and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Communications in Mathematical Physics, 231 (2002), 189-221.
doi: 10.1007/s00220-002-0691-6.![]() ![]() ![]() |
[26] |
S.-Y. A. Chang, C.-C. Chen and C.-S. Lin, Extremal functions for a mean field equation in two dimension, Lecture on Partial Differential Equations, New Stud. Adv. Math., Int. Press, Somerville, MA, 2 (2003), 61-93.
![]() ![]() |
[27] |
S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Communications in Mathematical Physics, 160 (1994), 217-238.
doi: 10.1007/BF02103274.![]() ![]() ![]() |
[28] |
C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact riemann surfaces, Communications on Pure and Applied Mathematics, 55 (2002), 728-771.
doi: 10.1002/cpa.3014.![]() ![]() ![]() |
[29] |
C.-C. Chen and C.-S. Lin, Topological degree for a mean field equation on riemann surfaces, Communications on Pure and Applied Mathematics, 56 (2003), 1667-1727.
doi: 10.1002/cpa.10107.![]() ![]() ![]() |
[30] |
C.-C. Chen and C.-S. Lin, Mean field equation of liouville type with singular data: Topological degree, Communications on Pure and Applied Mathematics, 68 (2015), 887-947.
doi: 10.1002/cpa.21532.![]() ![]() ![]() |
[31] |
C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Shaper estimates, Discrete Contin. Dyn. Syst., 28 (2010), 1237-1272.
doi: 10.3934/dcds.2010.28.1237.![]() ![]() ![]() |
[32] |
C.-C. Chen, C.-S. Lin and G. F. Wang, Concentration phenomena of two-vortex solutions in a chern-simons model, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 3 (2004), 367-397.
![]() ![]() |
[33] |
R. M. Chen, Y. J. Guo and D. Spirn, Asymptotic behavior and symmetry of condensate solutions in electroweak theory, Journal d'Analyse Mathématique, 117 (2012), 47-85.
doi: 10.1007/s11854-012-0014-6.![]() ![]() ![]() |
[34] |
W. X. Chen and C. M. Li, Classification of solutions of some nonlinear elliptic equations, Duke Mathematical Journal, 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[35] |
X. F. Chen and Y. Oshita, An application of the modular function in nonlocal variational problems, Archive for Rational Mechanics and Analysis, 186 (2007), 109-132.
doi: 10.1007/s00205-007-0050-z.![]() ![]() ![]() |
[36] |
Z. J. Chen, T.-J. Kuo, C.-S. Lin and C.-L. Wang, Green function, Painlevé Ⅵ equation, and Eisenstein series of wight one, Journal of Differential Geometry, 108 (2018), 185-241.
doi: 10.4310/jdg/1518490817.![]() ![]() ![]() |
[37] |
Z. Cheng, C. F. Gui and Y. Y. Hu, Blow-up solutions for a mean field equation on a flat torus, in Indiana University Math Journal.
![]() |
[38] |
K. Choe and N. Kim, Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 313-338.
doi: 10.1016/j.anihpc.2006.11.012.![]() ![]() ![]() |
[39] |
M. del Pino, M. Kowalczyk and M. Musso, Singular limits in liouville-type equations, Calculus of Variations and Partial Differential Equations, 24 (2005), 47-81.
doi: 10.1007/s00526-004-0314-5.![]() ![]() ![]() |
[40] |
Y. B. Deng, C.-S. Lin and S. S. Yan, On the prescribed scalar curvature problem in $\mathbb{R}^n$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.
doi: 10.1016/j.matpur.2015.07.003.![]() ![]() ![]() |
[41] |
W. Y. Ding, J. Jost, J. Y. Li and G. F. Wang, Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 653-666.
doi: 10.1016/S0294-1449(99)80031-6.![]() ![]() ![]() |
[42] |
Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses, Comm. Contemp. Math., 10 (2008), 205-220.
doi: 10.1142/S0219199708002776.![]() ![]() ![]() |
[43] |
J. Dolbeault, M. J. Esteban and G. Tarantello, Multiplicity results for the assigned gauss curvature problem in $\mathbb{R}^2$, Nonlinear Analysis: Theory, Methods and Applications, 70 (2009), 2870-2881.
doi: 10.1016/j.na.2008.12.040.![]() ![]() ![]() |
[44] |
P. Esposito and P. Figueroa, Singular mean field equations on compact Riemann surfaces, Nonlinear Analysis: Theory, Methods & Applications, 111 (2014), 33-65.
doi: 10.1016/j.na.2014.08.006.![]() ![]() ![]() |
[45] |
M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equation, Annales de lInstitut Henri Poincaré Non Linéar Analysis, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0.![]() ![]() ![]() |
[46] |
C. F. Gui and Y. Y. Hu, Non-axially symmetric solutions of a mean field equation on $\mathbb{S}^2$, Advances in Calculus of Variations, (2017), arXiv: 1709.02474.
doi: 10.1515/acv-2019-0006.![]() ![]() |
[47] |
C. F. Gui and A. Moradifam, The sphere covering inequality and its applications, Invent. Math., 214 (2018), 1169-1204.
doi: 10.1007/s00222-018-0820-2.![]() ![]() ![]() |
[48] |
C. F. Gui and A. Moradifam, Symmetry of solutions of a mean field equation on flat tori, Int. Math. Res. Not. IMRN, (2019), 799–809.
doi: 10.1093/imrn/rnx121.![]() ![]() ![]() |
[49] |
C. F. Gui and A. Moradifam, Uniqueness of solutions of mean field equations in $\mathbb{R}^2$, Proc. Amer. Math. Soc., 146 (2018), 1231-1242.
doi: 10.1090/proc/13814.![]() ![]() ![]() |
[50] |
Y. J. Guo, C. S. Lin and J. C. Wei, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIAM J. Math. Anal., 49 (2017), 3671-3715.
doi: 10.1137/16M1100290.![]() ![]() ![]() |
[51] |
Y. X. Guo, S. J. Peng and S. S. Yan, Local uniqueness and periodicity induced by concentration, Proceedings of the London Mathematical Society, 114 (2017), 1005-1043.
doi: 10.1112/plms.12029.![]() ![]() ![]() |
[52] |
J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Physical Review Letters, 64 (1990), 2230-2233.
doi: 10.1103/PhysRevLett.64.2230.![]() ![]() ![]() |
[53] |
R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Physical Review Letters, 64 (1990), 2234-2237.
doi: 10.1103/PhysRevLett.64.2234.![]() ![]() ![]() |
[54] |
J. Katz and D. Lynden-Bell, The Gravothermal instability in two dimensions, Monthly Notices of the Royal Astronomical Society, 184 (1978), 709-712.
doi: 10.1093/mnras/184.4.709.![]() ![]() |
[55] |
J. L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math., 99 (1974), 14-74.
doi: 10.2307/1971012.![]() ![]() ![]() |
[56] |
M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Communications on Pure and Applied Mathematics, 46 (1993), 27-56.
doi: 10.1002/cpa.3160460103.![]() ![]() ![]() |
[57] |
Y. Y. Li, Harnack type inequality: The method of moving planes, Communications in Mathematical Physics, 200 (1999), 421-444.
doi: 10.1007/s002200050536.![]() ![]() ![]() |
[58] |
Y. Y. Li and I. Shafrir, Blow-up analysis for Solutions of $-\Delta u = V(x)e^{u}$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270.
doi: 10.1512/iumj.1994.43.43054.![]() ![]() ![]() |
[59] |
C.-S. Lin, Topological degree for mean field equations on $\mathbb{S}^2$, Duke Mathematical Journal, 104 (2000), 501-536.
doi: 10.1215/S0012-7094-00-10437-1.![]() ![]() ![]() |
[60] |
C.-S. Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Archive for Rational Mechanics and Analysis, 153 (2000), 153-176.
doi: 10.1007/s002050000085.![]() ![]() ![]() |
[61] |
C.-S. Lin and S. S. Yan, On the mean field type bubbling solutions for Chern-Simons-Higgs equation, Advances in Mathematics, 338 (2018), 1141-1188.
doi: 10.1016/j.aim.2018.09.021.![]() ![]() ![]() |
[62] |
L. Ma and J. C. Wei, Convergence for a liouville equation, Commentarii Mathematici Helvetici, 76 (2001), 506-514.
doi: 10.1007/PL00013216.![]() ![]() ![]() |
[63] |
A. Poliakovsky and G. Tarantello, On a planar Liouville-type problem in the study of selfgravitating strings, Journal of Differential Equations, 252 (2012), 3668-3693.
doi: 10.1016/j.jde.2011.11.006.![]() ![]() ![]() |
[64] |
T. Ricciardi and G. Tarantello, On a periodic boundary value problem with exponential nonlinearities, Differential and Integral Equations, 11 (1998), 745-753.
![]() ![]() |
[65] |
Y. G. Shi, J. C. Sun, G. Tian and D. Y. Wei, Uniqueness of the mean field equation and rigidity of Hawking mass, Calc. Var. Partial Differential Equations, 58 (2019), Art. 41, 19 pp, arXiv: 1706.06766.
doi: 10.1007/s00526-019-1496-1.![]() ![]() ![]() |
[66] |
M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Bollettino dell'Unione Matematica Italiana, 1 (1998), 109-121.
![]() ![]() |
[67] |
T. Suzuki, Global analysis for a two-dimensional elliptic eiqenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 367-397.
doi: 10.1016/S0294-1449(16)30232-3.![]() ![]() ![]() |
[68] |
G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, Journal of Mathematical Physics, 37 (1996), 3769-3796.
doi: 10.1063/1.531601.![]() ![]() ![]() |
[69] |
G. Tarantello, Analytical, geometrical and topological aspects of a class of mean field equations on surfaces, Discrete and Continuous Dynamical Systems, 28 (2010), 931-973.
doi: 10.3934/dcds.2010.28.931.![]() ![]() ![]() |
[70] |
G. Tarantello, Blow-up analysis for a cosmic strings equation, Jour. Funct. An., 272 (2017), 255-338.
doi: 10.1016/j.jfa.2016.10.009.![]() ![]() ![]() |
[71] |
M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., 324 (1991), 793-821.
doi: 10.1090/S0002-9947-1991-1005085-9.![]() ![]() ![]() |
[72] |
J. C. Wei, On single interior spike solutions of the Gierer-Meinhardt system: Uniqueness and spectrum estimates, European Journal of Applied Mathematics, 10 (1999), 353-378.
doi: 10.1017/S0956792599003770.![]() ![]() ![]() |
[73] |
J. C. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 131 (2001), 1457-1480.
doi: 10.1017/S0308210500001487.![]() ![]() ![]() |
[74] |
G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. An., 119 (1992), 355-391.
doi: 10.1007/BF01837114.![]() ![]() ![]() |
[75] |
Y. S. Yang, Self-duality of the gauge field equations and the cosmological constant, Communications in Mathematical Physics, 162 (1994), 481-498.
doi: 10.1007/BF02101744.![]() ![]() ![]() |