doi: 10.3934/dcds.2020040

Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere

Department of Mathematical Sciences, Osaka Prefecture University, Gakuencho, Sakai, 599-8531, Japan

* Corresponding author: Yoshitsugu Kabeya

Dedicated to Professor Wei-Ming Ni on the occasion of his seventieth birthday

Received  February 2019 Revised  May 2019 Published  October 2019

Fund Project: The author is supported in part by JSPS KAKENHI Grant Numbers 15K04965 and 15H03631

We consider the eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a spherical domain. Especially, we investigate the case when the domain is a large zonal one and letting the zone larger so that the zone covers the whole sphere as a limit. We discuss the behavior of eigenvalues according to the rate of expansion of the zone.

Citation: Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020040
References:
[1]

C. Bandle, Y. Kabeya and H. Ninomiya, Bifurcating solutions of a nonlinear elliptic Neumann problem on large spherical caps, in Funk. Ekvac.. Google Scholar

[2]

R. Beals and R. Wong, Special Functions: A Graduate Text, Cambridge Studies in Advanced Mathematics, 126. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511762543.  Google Scholar

[3]

G. Courtois, Spectrum of manifolds with holes, J. Funct. Anal., 134 (1995), 194-221.  doi: 10.1006/jfan.1995.1142.  Google Scholar

[4]

E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.  Google Scholar

[5]

Y. KabeyaT. KawakamiA. Kosaka and H. Ninomiya, Eigenvalues of the Laplace-Beltrami operator on a large spherical cap under the Robin problem, Kodai Math. J., 37 (2014), 620-645.  doi: 10.2996/kmj/1414674613.  Google Scholar

[6]

M. L. de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach, Rev. Mat. Complut., 25 (2012), 369-412.  doi: 10.1007/s13163-011-0081-8.  Google Scholar

[7]

H. M. Macdonald, Zeroes of the spherical harmonics $P^m_n(\mu)$ considered as a Function of $n$, Proc. London Math. Soc., 31 (1899), 264-278.  doi: 10.1112/plms/s1-31.1.264.  Google Scholar

[8]

C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17. Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[9]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[10]

W.-M. Ni and X. F. Wang, On the first positive Neumann eigenvalue, Discrete. Contin. Dyn. Syst., 17 (2007), 1-19.  doi: 10.3934/dcds.2007.17.1.  Google Scholar

[11]

S. Ozawa, Singular variations of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981), 767-778.  doi: 10.1215/S0012-7094-81-04842-0.  Google Scholar

[12]

S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 243-257.   Google Scholar

[13]

S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains–the Neumann condition, Osaka J. Math., 22 (1985), 639-655.   Google Scholar

[14]

N. Shimakura, Partial Differential Operators of Elliptic Type, Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[15]

E. C. Titchmarsh, Eigenfunction expansions associated with partial differential equations, V. Proc. London Math. Soc., 5 (1955), 1-21.  doi: 10.1112/plms/s3-5.1.1.  Google Scholar

[16]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Second Edition, Clarendon Press, Oxford, 1962.  Google Scholar

show all references

References:
[1]

C. Bandle, Y. Kabeya and H. Ninomiya, Bifurcating solutions of a nonlinear elliptic Neumann problem on large spherical caps, in Funk. Ekvac.. Google Scholar

[2]

R. Beals and R. Wong, Special Functions: A Graduate Text, Cambridge Studies in Advanced Mathematics, 126. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511762543.  Google Scholar

[3]

G. Courtois, Spectrum of manifolds with holes, J. Funct. Anal., 134 (1995), 194-221.  doi: 10.1006/jfan.1995.1142.  Google Scholar

[4]

E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.  Google Scholar

[5]

Y. KabeyaT. KawakamiA. Kosaka and H. Ninomiya, Eigenvalues of the Laplace-Beltrami operator on a large spherical cap under the Robin problem, Kodai Math. J., 37 (2014), 620-645.  doi: 10.2996/kmj/1414674613.  Google Scholar

[6]

M. L. de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach, Rev. Mat. Complut., 25 (2012), 369-412.  doi: 10.1007/s13163-011-0081-8.  Google Scholar

[7]

H. M. Macdonald, Zeroes of the spherical harmonics $P^m_n(\mu)$ considered as a Function of $n$, Proc. London Math. Soc., 31 (1899), 264-278.  doi: 10.1112/plms/s1-31.1.264.  Google Scholar

[8]

C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17. Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[9]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[10]

W.-M. Ni and X. F. Wang, On the first positive Neumann eigenvalue, Discrete. Contin. Dyn. Syst., 17 (2007), 1-19.  doi: 10.3934/dcds.2007.17.1.  Google Scholar

[11]

S. Ozawa, Singular variations of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981), 767-778.  doi: 10.1215/S0012-7094-81-04842-0.  Google Scholar

[12]

S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 243-257.   Google Scholar

[13]

S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains–the Neumann condition, Osaka J. Math., 22 (1985), 639-655.   Google Scholar

[14]

N. Shimakura, Partial Differential Operators of Elliptic Type, Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[15]

E. C. Titchmarsh, Eigenfunction expansions associated with partial differential equations, V. Proc. London Math. Soc., 5 (1955), 1-21.  doi: 10.1112/plms/s3-5.1.1.  Google Scholar

[16]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Second Edition, Clarendon Press, Oxford, 1962.  Google Scholar

[1]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[2]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[3]

Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115

[4]

Mikhail Karpukhin. Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electronic Research Announcements, 2017, 24: 100-109. doi: 10.3934/era.2017.24.011

[5]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[6]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[7]

Antonio Vitolo. $H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1315-1329. doi: 10.3934/cpaa.2011.10.1315

[8]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[9]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[10]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[11]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

[12]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[13]

Martí Prats. Beltrami equations in the plane and Sobolev regularity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 319-332. doi: 10.3934/cpaa.2018018

[14]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[15]

Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, Shing Tung Yau. Detection of shape deformities using Yamabe flow and Beltrami coefficients. Inverse Problems & Imaging, 2010, 4 (2) : 311-333. doi: 10.3934/ipi.2010.4.311

[16]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[17]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[18]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[19]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[20]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]