We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.
Citation: |
[1] |
C. Bardos, A. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
doi: 10.1080/03605307908820117.![]() ![]() ![]() |
[2] |
M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.
doi: 10.1515/anona-2018-0056.![]() ![]() ![]() |
[3] |
M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.
doi: 10.4171/RLM/839.![]() ![]() ![]() |
[4] |
M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625.
![]() |
[5] |
F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.
doi: 10.1080/03605309108820758.![]() ![]() ![]() |
[6] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
![]() ![]() |
[7] |
A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1858-6.![]() ![]() ![]() |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991).
![]() |
[9] |
T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.
doi: 10.1016/0022-0396(84)90096-2.![]() ![]() ![]() |
[10] |
J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996.
doi: 10.1007/978-1-4899-6824-1.![]() ![]() ![]() |
[11] |
F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734.
![]() ![]() |
[12] |
D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves,
Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511612374.![]() ![]() ![]() |
[13] |
A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.
doi: 10.1016/0362-546X(95)00172-R.![]() ![]() ![]() |