Advanced Search
Article Contents
Article Contents

Signed Radon measure-valued solutions of flux saturated scalar conservation laws

  • * Corresponding author: Alberto Tesei

    * Corresponding author: Alberto Tesei
Abstract Full Text(HTML) Related Papers Cited by
  • We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. BardosA. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.
    [2] M. BertschF. SmarrazzoA. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.  doi: 10.1515/anona-2018-0056.
    [3] M. BertschF. SmarrazzoA. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.  doi: 10.4171/RLM/839.
    [4] M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625.
    [5] F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.  doi: 10.1080/03605309108820758.
    [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [7] A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1858-6.
    [8] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991).
    [9] T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.  doi: 10.1016/0022-0396(84)90096-2.
    [10] J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.
    [11] F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. 
    [12] D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374.
    [13] A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.  doi: 10.1016/0362-546X(95)00172-R.
  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views(1158) PDF downloads(262) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint