June  2020, 40(6): 3143-3169. doi: 10.3934/dcds.2020041

Signed Radon measure-valued solutions of flux saturated scalar conservation laws

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy, and, Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy

2. 

Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy

3. 

Dipartimento di Matematica "G. Castelnuovo", Università "Sapienza" di Roma, P.le A. Moro 5, I-00185 Roma, Italy

4. 

Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy

* Corresponding author: Alberto Tesei

Received  February 2019 Published  October 2019

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

Citation: Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041
References:
[1]

C. BardosA. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[2]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.  doi: 10.1515/anona-2018-0056.  Google Scholar

[3]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.  doi: 10.4171/RLM/839.  Google Scholar

[4]

M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625. Google Scholar

[5]

F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.  doi: 10.1080/03605309108820758.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[7]

A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1858-6.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991). Google Scholar

[9]

T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.  doi: 10.1016/0022-0396(84)90096-2.  Google Scholar

[10]

J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.  Google Scholar

[11]

F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734.   Google Scholar

[12]

D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374.  Google Scholar

[13]

A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.  doi: 10.1016/0362-546X(95)00172-R.  Google Scholar

show all references

References:
[1]

C. BardosA. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[2]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.  doi: 10.1515/anona-2018-0056.  Google Scholar

[3]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.  doi: 10.4171/RLM/839.  Google Scholar

[4]

M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625. Google Scholar

[5]

F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.  doi: 10.1080/03605309108820758.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[7]

A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1858-6.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991). Google Scholar

[9]

T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.  doi: 10.1016/0022-0396(84)90096-2.  Google Scholar

[10]

J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.  Google Scholar

[11]

F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734.   Google Scholar

[12]

D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374.  Google Scholar

[13]

A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.  doi: 10.1016/0362-546X(95)00172-R.  Google Scholar

[1]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[2]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[3]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[4]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[5]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[6]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[7]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[8]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[9]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[10]

Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038

[11]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[12]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[13]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[14]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[17]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017

[18]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[19]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[20]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (121)
  • HTML views (274)
  • Cited by (0)

[Back to Top]