June  2020, 40(6): 3143-3169. doi: 10.3934/dcds.2020041

Signed Radon measure-valued solutions of flux saturated scalar conservation laws

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy, and, Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy

2. 

Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy

3. 

Dipartimento di Matematica "G. Castelnuovo", Università "Sapienza" di Roma, P.le A. Moro 5, I-00185 Roma, Italy

4. 

Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy

* Corresponding author: Alberto Tesei

Received  February 2019 Published  October 2019

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

Citation: Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041
References:
[1]

C. BardosA. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.

[2]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.  doi: 10.1515/anona-2018-0056.

[3]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.  doi: 10.4171/RLM/839.

[4]

M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625.

[5]

F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.  doi: 10.1080/03605309108820758.

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[7]

A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1858-6.

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991).

[9]

T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.  doi: 10.1016/0022-0396(84)90096-2.

[10]

J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.

[11]

F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. 

[12]

D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374.

[13]

A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.  doi: 10.1016/0362-546X(95)00172-R.

show all references

References:
[1]

C. BardosA. Y. le Roux and J. C. Nédélec, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.

[2]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal., 9 (2020), 65-107.  doi: 10.1515/anona-2018-0056.

[3]

M. BertschF. SmarrazzoA. Terracina and A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 137-168.  doi: 10.4171/RLM/839.

[4]

M. Bertsch, F. Smarrazzo, A. Terracina and A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, Preprint, (2019), arXiv: 1906.05625.

[5]

F. Demengel and D. Serre, Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, 16 (1991), 221-254.  doi: 10.1080/03605309108820758.

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[7]

A. Friedman, Mathematics in Industrial Problems, Part 8, The IMA Volumes in Mathematics and its Applications, 83. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1858-6.

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Qquasi-linear equations of parabolic type, Amer. Math. Soc., (1991).

[9]

T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441.  doi: 10.1016/0022-0396(84)90096-2.

[10]

J. Málek, J. Nečas, M. Rokyta and M. R${{\rm{\dot u}}}$žička, Weak and Measure-Valued Solutions of Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.

[11]

F. Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. 

[12]

D. Serre, Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374.

[13]

A. Terracina, Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal., 28 (1997), 633-653.  doi: 10.1016/0362-546X(95)00172-R.

[1]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[2]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[3]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[4]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[5]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[6]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[7]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[8]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[9]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[10]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[11]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[12]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[13]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[14]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[15]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[16]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[17]

Dominic Veconi. SRB measures of singular hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3415-3430. doi: 10.3934/dcds.2022020

[18]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[19]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[20]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (236)
  • HTML views (503)
  • Cited by (0)

[Back to Top]