doi: 10.3934/dcds.2020048

The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs

1. 

The George Washington University, Washington, DC 20052, USA

2. 

Alvernia University, Reading, PA 19607, USA

* Corresponding author. Phone: 1 202 994-6791; Fax: 1 202 994-6760

Received  March 2019 Revised  August 2019 Published  October 2019

Fund Project: Xiaofeng Ren is supported in part by NSF grant DMS-1714371

When the Ohta-Kawasaki theory for diblock copolymers is applied to a bounded domain with the Neumann boundary condition, one faces the possibility of micro-domain interfaces intersecting the system boundary. In a particular parameter range, there exist stationary assemblies, stable in some sense, that consist of both perturbed discs in the interior of the system and perturbed half discs attached to the boundary of the system. The circular arcs of the half discs meet the system boundary perpendicularly. The number of the interior discs and the number of the boundary half discs are arbitrarily prescribed and their radii are asymptotically the same. The locations of these discs and half discs are determined by the minimization of a function related to the Green's function of the Laplace operator with the Neumann boundary condition. Numerical calculations based on the theoretical findings show that boundary half discs help lower the energy of stationary assemblies.

Citation: Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020048
References:
[1]

E. AcerbiN. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515-557.  doi: 10.1007/s00220-013-1733-y.  Google Scholar

[2]

F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today, 52 (1999), 32-38.  doi: 10.1063/1.882522.  Google Scholar

[3]

R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-inteface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.  Google Scholar

[4]

P. C. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM J. Math. Anal., 33 (2001), 589-606.  doi: 10.1137/S0036141000372507.  Google Scholar

[5]

D. GoldmanC. B. Muratov and S. Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Rat. Mech. Anal., 210 (2013), 581-613.  doi: 10.1007/s00205-013-0657-1.  Google Scholar

[6]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys., 299 (2010), 45-87.  doi: 10.1007/s00220-010-1094-8.  Google Scholar

[7]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers, Physica D, 84 (1995), 31-39.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[8]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.  doi: 10.1021/ma00164a028.  Google Scholar

[9]

X. F. Ren and D. Shoup, The impact of the domain boundary on an inhibitory system: Existence and location of a stationary half disc, Comm. Math. Phys., 340 (2015), 355-412.  doi: 10.1007/s00220-015-2451-4.  Google Scholar

[10]

X. F. Ren and J. C. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal., 31 (2000), 909-924.  doi: 10.1137/S0036141098348176.  Google Scholar

[11]

X. F. Ren and J. C. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879-921.  doi: 10.1142/S0129055X07003139.  Google Scholar

show all references

References:
[1]

E. AcerbiN. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515-557.  doi: 10.1007/s00220-013-1733-y.  Google Scholar

[2]

F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today, 52 (1999), 32-38.  doi: 10.1063/1.882522.  Google Scholar

[3]

R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-inteface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.  Google Scholar

[4]

P. C. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM J. Math. Anal., 33 (2001), 589-606.  doi: 10.1137/S0036141000372507.  Google Scholar

[5]

D. GoldmanC. B. Muratov and S. Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Rat. Mech. Anal., 210 (2013), 581-613.  doi: 10.1007/s00205-013-0657-1.  Google Scholar

[6]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys., 299 (2010), 45-87.  doi: 10.1007/s00220-010-1094-8.  Google Scholar

[7]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers, Physica D, 84 (1995), 31-39.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[8]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.  doi: 10.1021/ma00164a028.  Google Scholar

[9]

X. F. Ren and D. Shoup, The impact of the domain boundary on an inhibitory system: Existence and location of a stationary half disc, Comm. Math. Phys., 340 (2015), 355-412.  doi: 10.1007/s00220-015-2451-4.  Google Scholar

[10]

X. F. Ren and J. C. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal., 31 (2000), 909-924.  doi: 10.1137/S0036141098348176.  Google Scholar

[11]

X. F. Ren and J. C. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879-921.  doi: 10.1142/S0129055X07003139.  Google Scholar

Figure 1.  From the left of the first row with $ n_i = 10 $ and $ n_b = 0 $ to the right of the last row with $ n_i = 0 $ and $ n_b = 20 $, these assemblies, of $ n_i + \frac{n_b}{2} = 10 $, minimize $ F $. Among them, the right one on the first row has the least $ F $ value. Here $ \omega = 0.2 $
Table 1.  Stationary assemblies with $ n_i+\frac{n_b}{2} $ less than or equal to 4
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
1 1 0 -0.0796
1 0 2 -0.0307
1.5 1 1 -0.1365
1.5 0 3 -0.1131
2 2 0 -0.2221
2 1 2 -0.2333
2 0 4 -0.2025
2.5 2 1 -0.3440
2.5 1 3 -0.3374
2.5 0 5 -0.2922
3 3 0 -0.4619
3 2 2 -0.4706
3 1 4 -0.4421
3 0 6 -0.3780
3.5 3 1 -0.5955
3.5 2 3 -0.5890
3.5 1 5 -0.5707
3.5 0 7 -0.4573
4 4 0 -0.7301
4 3 2 -0.7287
4 2 4 -0.6783
4 1 6 -0.6963
4 0 8 -0.5280
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
1 1 0 -0.0796
1 0 2 -0.0307
1.5 1 1 -0.1365
1.5 0 3 -0.1131
2 2 0 -0.2221
2 1 2 -0.2333
2 0 4 -0.2025
2.5 2 1 -0.3440
2.5 1 3 -0.3374
2.5 0 5 -0.2922
3 3 0 -0.4619
3 2 2 -0.4706
3 1 4 -0.4421
3 0 6 -0.3780
3.5 3 1 -0.5955
3.5 2 3 -0.5890
3.5 1 5 -0.5707
3.5 0 7 -0.4573
4 4 0 -0.7301
4 3 2 -0.7287
4 2 4 -0.6783
4 1 6 -0.6963
4 0 8 -0.5280
Table 2.  Stationary assemblies with $ n_i+\frac{n_b}{2} = 10 $
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
10 10 0 -2.5781
10 9 2 -2.5819
10 8 4 -2.5885
10 7 6 -2.5793
10 6 8 -2.5644
10 5 10 -2.5433
10 4 12 -2.4791
10 3 14 -2.2864
10 2 16 -1.9222
10 1 18 -1.3549
10 0 20 -0.3911
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
10 10 0 -2.5781
10 9 2 -2.5819
10 8 4 -2.5885
10 7 6 -2.5793
10 6 8 -2.5644
10 5 10 -2.5433
10 4 12 -2.4791
10 3 14 -2.2864
10 2 16 -1.9222
10 1 18 -1.3549
10 0 20 -0.3911
[1]

Xiaofeng Ren, Chong Wang. A stationary core-shell assembly in a ternary inhibitory system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 983-1012. doi: 10.3934/dcds.2017041

[2]

Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098

[3]

Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061

[4]

Jinzhi Lei, Frederic Y. M. Wan, Arthur D. Lander, Qing Nie. Robustness of signaling gradient in drosophila wing imaginal disc. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 835-866. doi: 10.3934/dcdsb.2011.16.835

[5]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[6]

Song Wang, Xia Lou. An optimization approach to the estimation of effective drug diffusivity: From a planar disc into a finite external volume. Journal of Industrial & Management Optimization, 2009, 5 (1) : 127-140. doi: 10.3934/jimo.2009.5.127

[7]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (I) --- Basic state solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1091-1116. doi: 10.3934/dcdsb.2004.4.1091

[8]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure & Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527

[9]

Jianghong Bao, Dandan Chen, Yongjian Liu, Hongbo Deng. Coexisting hidden attractors in a 5D segmented disc dynamo with three types of equilibria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6053-6069. doi: 10.3934/dcdsb.2019130

[10]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[11]

Stéphanie Portet, Julien Arino. An in vivo intermediate filament assembly model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 117-134. doi: 10.3934/mbe.2009.6.117

[12]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[13]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[14]

Jérôme Coville, Juan Dávila. Existence of radial stationary solutions for a system in combustion theory. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 739-766. doi: 10.3934/dcdsb.2011.16.739

[15]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[16]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[17]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[18]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic & Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[19]

Jongkeun Choi, Hongjie Dong, Doyoon Kim. Conormal derivative problems for stationary Stokes system in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2349-2374. doi: 10.3934/dcds.2018097

[20]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]