June  2020, 40(6): 3357-3374. doi: 10.3934/dcds.2020049

Spike solutions for a mass conservation reaction-diffusion system

1. 

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

2. 

Department of Mathematics, National Changhua University of Education, Changhua, Taiwan

* Corresponding author: Shin-Ichiro Ei

-dedicated to 70th birthday of Prof. Wei-Ming Ni-

Received  March 2019 Revised  July 2019 Published  October 2019

This article deals with a mass conservation reaction-diffusion system. As a model for studying cell polarity, we are interested in the existence of spike solutions and some properties related to its dynamics. Variational arguments will be employed to investigate the existence questions. The profile of a spike solution looks like a standing pulse. In addition, the motion of such spikes in heterogeneous media will be derived.

Citation: Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 394-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

C.-N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Rational Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.

[3]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.

[4]

C.-N. ChenY. S. Choi and N. Fusco, The $\Gamma$-limit of traveling waves in the FitzHugh-Nagumo system, J. Differential Equations, 267 (2019), 1805-1835.  doi: 10.1016/j.jde.2019.02.023.

[5]

C.-N. ChenY.-S. Choi and X. F. Ren, Bubbles and droplets in a singular limit of the FitzHugh-Nagumo system, Interfaces and Free Boundaries, 20 (2018), 165-210.  doi: 10.4171/IFB/400.

[6]

C.-N. ChenY.-S. ChoiY. Y. Hu and X. F. Ren, Higher dimensional bubble profiles in a singular limit of the FitzHugh-Nagumo system, SIAM J. Math. Anal., 50 (2018), 5072-5095.  doi: 10.1137/17M1144933.

[7]

C.-N. ChenS.-I. Ei and S.-Y. Tzeng, Heterogeneity induced effects for pulse dynamics in FitzHugh-Nagumo type systems, Physica D: Nonlinear Phenomena, 382/383 (2018), 22-32.  doi: 10.1016/j.physd.2018.07.001.

[8]

C.-N. Chen and X. J. Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéarie, 24 (2007), 589-603.  doi: 10.1016/j.anihpc.2006.06.002.

[9]

C.-N. Chen and X. J. Hu, Stability criteria for reaction-diffusion systems with skew-gradient structure, Communications in Partial Differential Equations, 33 (2008), 189-208.  doi: 10.1080/03605300601188755.

[10]

C.-N. Chen and X. J. Hu, Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 49 (2014), 827-845.  doi: 10.1007/s00526-013-0601-0.

[11]

C.-N. Chen and K. Tanaka, A variational approach for standing waves of FitzHugh-Nagumo type systems, J. Differential Equations, 257 (2014), 109-144.  doi: 10.1016/j.jde.2014.03.013.

[12]

C.-N. Chen and S.-Y. Tzeng, Periodic solutions and their connecting orbits of Hamiltonian systems, J. Differential Equations, 177 (2001), 121-145.  doi: 10.1006/jdeq.2000.3996.

[13]

A. DoelmanP. van Heijster and T. J. Kaper, Pulse dynamics in a three-component system: Existence analysis, J. Dynam. Differential Equations, 21 (2009), 73-115.  doi: 10.1007/s10884-008-9125-2.

[14]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.

[15]

S.-I. Ei and J. C. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimension, Japan J. Ind. Appl. Math., 19 (2002), 181-226.  doi: 10.1007/BF03167453.

[16]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass-conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203(R). doi: 10.1103/PhysRevE.75.015203.

[17]

S. Jimbo and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.  doi: 10.1016/j.jde.2013.05.021.

[18]

J. Keener and J. Sneyd, Mathematical Physiology. Vol. I: Cellular Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/I. Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.

[19]

M. KuwamuraS. Seirin-Lee and S.-I. Ei, Dynamics of localized unimodal patterns in reaction-diffusion systems for cell polarization by extracellular signaling, SIAM J. APPL. MATH., 78 (2018), 3238-3257.  doi: 10.1137/18M1163749.

[20]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107-118.  doi: 10.1016/j.jmaa.2013.09.039.

[21]

Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.  doi: 10.1088/0951-7715/23/6/007.

[22]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.

[23]

M. OtsujiS. IshiharaC. CoK. KaibuchiA. Mochizuki and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput. Biol., 3 (2007), 1040-1054.  doi: 10.1371/journal.pcbi.0030108.

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.

[25]

C. Reinecke and G. Sweers, A positive solution on ${\mathbb R}^n$ to a equations of FitzHugh-Nagumo type, J. Differential Equations, 153 (1999), 292-312.  doi: 10.1006/jdeq.1998.3560.

[26]

T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.

[27]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Localized patterns in a three-component FitzHugh-Nagumo model revisited via an action functional, J. Dynam. Differential Equations, 30 (2018), 521-555.  doi: 10.1007/s10884-016-9557-z.

[28]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model, J. Dyn. Differ. Equ., 31 (2019), 153-203.  doi: 10.1007/s10884-018-9694-7.

[29]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.

show all references

-dedicated to 70th birthday of Prof. Wei-Ming Ni-

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 394-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

C.-N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Rational Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.

[3]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.

[4]

C.-N. ChenY. S. Choi and N. Fusco, The $\Gamma$-limit of traveling waves in the FitzHugh-Nagumo system, J. Differential Equations, 267 (2019), 1805-1835.  doi: 10.1016/j.jde.2019.02.023.

[5]

C.-N. ChenY.-S. Choi and X. F. Ren, Bubbles and droplets in a singular limit of the FitzHugh-Nagumo system, Interfaces and Free Boundaries, 20 (2018), 165-210.  doi: 10.4171/IFB/400.

[6]

C.-N. ChenY.-S. ChoiY. Y. Hu and X. F. Ren, Higher dimensional bubble profiles in a singular limit of the FitzHugh-Nagumo system, SIAM J. Math. Anal., 50 (2018), 5072-5095.  doi: 10.1137/17M1144933.

[7]

C.-N. ChenS.-I. Ei and S.-Y. Tzeng, Heterogeneity induced effects for pulse dynamics in FitzHugh-Nagumo type systems, Physica D: Nonlinear Phenomena, 382/383 (2018), 22-32.  doi: 10.1016/j.physd.2018.07.001.

[8]

C.-N. Chen and X. J. Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéarie, 24 (2007), 589-603.  doi: 10.1016/j.anihpc.2006.06.002.

[9]

C.-N. Chen and X. J. Hu, Stability criteria for reaction-diffusion systems with skew-gradient structure, Communications in Partial Differential Equations, 33 (2008), 189-208.  doi: 10.1080/03605300601188755.

[10]

C.-N. Chen and X. J. Hu, Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 49 (2014), 827-845.  doi: 10.1007/s00526-013-0601-0.

[11]

C.-N. Chen and K. Tanaka, A variational approach for standing waves of FitzHugh-Nagumo type systems, J. Differential Equations, 257 (2014), 109-144.  doi: 10.1016/j.jde.2014.03.013.

[12]

C.-N. Chen and S.-Y. Tzeng, Periodic solutions and their connecting orbits of Hamiltonian systems, J. Differential Equations, 177 (2001), 121-145.  doi: 10.1006/jdeq.2000.3996.

[13]

A. DoelmanP. van Heijster and T. J. Kaper, Pulse dynamics in a three-component system: Existence analysis, J. Dynam. Differential Equations, 21 (2009), 73-115.  doi: 10.1007/s10884-008-9125-2.

[14]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.

[15]

S.-I. Ei and J. C. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimension, Japan J. Ind. Appl. Math., 19 (2002), 181-226.  doi: 10.1007/BF03167453.

[16]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass-conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203(R). doi: 10.1103/PhysRevE.75.015203.

[17]

S. Jimbo and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.  doi: 10.1016/j.jde.2013.05.021.

[18]

J. Keener and J. Sneyd, Mathematical Physiology. Vol. I: Cellular Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/I. Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.

[19]

M. KuwamuraS. Seirin-Lee and S.-I. Ei, Dynamics of localized unimodal patterns in reaction-diffusion systems for cell polarization by extracellular signaling, SIAM J. APPL. MATH., 78 (2018), 3238-3257.  doi: 10.1137/18M1163749.

[20]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107-118.  doi: 10.1016/j.jmaa.2013.09.039.

[21]

Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.  doi: 10.1088/0951-7715/23/6/007.

[22]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.

[23]

M. OtsujiS. IshiharaC. CoK. KaibuchiA. Mochizuki and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput. Biol., 3 (2007), 1040-1054.  doi: 10.1371/journal.pcbi.0030108.

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.

[25]

C. Reinecke and G. Sweers, A positive solution on ${\mathbb R}^n$ to a equations of FitzHugh-Nagumo type, J. Differential Equations, 153 (1999), 292-312.  doi: 10.1006/jdeq.1998.3560.

[26]

T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.

[27]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Localized patterns in a three-component FitzHugh-Nagumo model revisited via an action functional, J. Dynam. Differential Equations, 30 (2018), 521-555.  doi: 10.1007/s10884-016-9557-z.

[28]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model, J. Dyn. Differ. Equ., 31 (2019), 153-203.  doi: 10.1007/s10884-018-9694-7.

[29]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.

[1]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[2]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[3]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[4]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[5]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[6]

Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030

[7]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[8]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[9]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[10]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[11]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[12]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[13]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[14]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[15]

Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

[16]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[17]

Michel Pierre, Didier Schmitt. Examples of finite time blow up in mass dissipative reaction-diffusion systems with superquadratic growth. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022039

[18]

Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3785-3801. doi: 10.3934/dcdss.2020433

[20]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (464)
  • HTML views (488)
  • Cited by (3)

Other articles
by authors

[Back to Top]