Advanced Search
Article Contents
Article Contents

Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $

  • * Corresponding author: Manuel del Pino

    * Corresponding author: Manuel del Pino 

The first author has been supported by a UK Royal Society Research Professorship and Grant PAI AFB-170001, Chile. The second author has been partly supported by Fondecyt grant 1160135, Chile. The research of the third author is partially supported by NSERC of Canada

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Cauchy problem for the energy critical heat equation

    $ \begin{equation} \left\{ \begin{aligned} u_t & = \Delta u + u^3 {\quad\hbox{in } }\ \mathbb R^4 \times (0, T), \\ u(\cdot, 0) & = u_0 {\quad\hbox{in } } \mathbb R^4. \end{aligned}\right. ~~~~~~~~~~~~~~~~~~~~~~~(1)\end{equation} $

    We find that for given points $ q_1, q_2, \ldots, q_k $ and any sufficiently small $ T>0 $ there is an initial condition $ u_0 $ such that the solution $ u(x, t) $ of (1) blows up at exactly those $ k $ points with a type Ⅱ rate, namely larger than $ (T-t)^{-\frac 12} $. In fact $ \|u(\cdot, t)\|_\infty \sim (T-t)^{-1}\log^2(T-t) $. The blow-up profile around each point is of bubbling type, in the form of sharply scaled Aubin-Talenti bubbles.

    Mathematics Subject Classification: Primary: 35K58; Secondary: 35B40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Collot, Nonradial type Ⅱ blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252.  doi: 10.2140/apde.2017.10.127.
    [2] C. Collot, F. Merle and P. Raphael, On strongly anisotropic type Ⅱ blow up, preprint, arXiv: 1709.04941.
    [3] C. Collot, P. Raphaël and J. Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Mem. Amer. Math. Soc. 260. (2019), arXiv: 1605.07337. doi: 10.1090/memo/1255.
    [4] C. Cortázar, M. del Pino and M. Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear.
    [5] P. DaskalopoulosM. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., 738 (2018), 1-71.  doi: 10.1515/crelle-2015-0048.
    [6] J. Dávila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. arXiv: 1702.05801.
    [7] J. Dávila, M. del Pino, C. Pesce and J. Wei, Blow-up for the 3-dimensional axially symmetric harmonic map flow into $\mathbb{S}^2$, Discrete Contin. Dyn. Syst., to appear.
    [8] M. del Pino, M. Musso and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE, to appear.
    [9] M. del Pino, M. Musso and J. Wei, Geometry driven Type Ⅱ higher dimensional blow-up for the critical heat equation, preprint, arXiv: 1710.11461.
    [10] M. del PinoM. Musso and J. C. Wei, Type Ⅱ blow-up in the 5-dimensional energy critical heat equation, Acta Mathematica Sinica (Engl. Ser.), 35 (2019), 1027-1042.  doi: 10.1007/s10114-019-8341-5.
    [11] T. DuyckaertsC. Kenig and F. Merle, Universality of blow-up profile for small radial type Ⅱ blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.  doi: 10.4171/JEMS/261.
    [12] C. J. Fan, Log-log blow up solutions blow up at exactly m points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1429-1482.  doi: 10.1016/j.anihpc.2016.11.002.
    [13] S. FilippasM. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2957-2982.  doi: 10.1098/rspa.2000.0648.
    [14] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+a}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. 
    [15] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.
    [16] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.
    [17] Y. GigaS. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401.
    [18] M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), 141-145. 
    [19] M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Unpublished.
    [20] J. Jendrej, Construction of type Ⅱ blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., 272 (2017), 866-917.  doi: 10.1016/j.jfa.2016.10.019.
    [21] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508.
    [22] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.
    [23] J. KriegerW. Schlag and D. Tataru, Slow blow-up solutions for the $H^{1}( \mathbb R^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.  doi: 10.1215/00127094-2009-005.
    [24] H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.
    [25] H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021.
    [26] H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025.
    [27] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.
    [28] F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.  doi: 10.1215/S0012-7094-97-08605-1.
    [29] N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012.
    [30] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.
    [31] P. Raphaël and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., 66 (2013), 414-480.  doi: 10.1002/cpa.21435.
    [32] R. Schweyer, Type Ⅱ blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983.  doi: 10.1016/j.jfa.2012.09.015.
  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views(1962) PDF downloads(594) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint