    June  2020, 40(6): 3327-3355. doi: 10.3934/dcds.2020052

## Type Ⅱ finite time blow-up for the energy critical heat equation in $\mathbb{R}^4$

 1 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom 2 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

* Corresponding author: Manuel del Pino

Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday.

Received  April 2019 Revised  May 2019 Published  October 2019

Fund Project: The first author has been supported by a UK Royal Society Research Professorship and Grant PAI AFB-170001, Chile. The second author has been partly supported by Fondecyt grant 1160135, Chile. The research of the third author is partially supported by NSERC of Canada

We consider the Cauchy problem for the energy critical heat equation
 \begin{equation} \left\{ \begin{aligned} u_t & = \Delta u + u^3 {\quad\hbox{in } }\ \mathbb R^4 \times (0, T), \\ u(\cdot, 0) & = u_0 {\quad\hbox{in } } \mathbb R^4. \end{aligned}\right. ~~~~~~~~~~~~~~~~~~~~~~~(1)\end{equation}
We find that for given points
 $q_1, q_2, \ldots, q_k$
and any sufficiently small
 $T>0$
there is an initial condition
 $u_0$
such that the solution
 $u(x, t)$
of (1) blows up at exactly those
 $k$
points with a type Ⅱ rate, namely larger than
 $(T-t)^{-\frac 12}$
. In fact
 $\|u(\cdot, t)\|_\infty \sim (T-t)^{-1}\log^2(T-t)$
. The blow-up profile around each point is of bubbling type, in the form of sharply scaled Aubin-Talenti bubbles.
Citation: Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $\mathbb{R}^4$. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052
##### References:
  C. Collot, Nonradial type Ⅱ blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252.  doi: 10.2140/apde.2017.10.127.  Google Scholar  C. Collot, F. Merle and P. Raphael, On strongly anisotropic type Ⅱ blow up, preprint, arXiv: 1709.04941. Google Scholar  C. Collot, P. Raphaël and J. Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Mem. Amer. Math. Soc. 260. (2019), arXiv: 1605.07337. doi: 10.1090/memo/1255.  Google Scholar  C. Cortázar, M. del Pino and M. Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear. Google Scholar  P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., 738 (2018), 1-71.  doi: 10.1515/crelle-2015-0048.  Google Scholar  J. Dávila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. arXiv: 1702.05801. Google Scholar  J. Dávila, M. del Pino, C. Pesce and J. Wei, Blow-up for the 3-dimensional axially symmetric harmonic map flow into $\mathbb{S}^2$, Discrete Contin. Dyn. Syst., to appear. Google Scholar  M. del Pino, M. Musso and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE, to appear. Google Scholar  M. del Pino, M. Musso and J. Wei, Geometry driven Type Ⅱ higher dimensional blow-up for the critical heat equation, preprint, arXiv: 1710.11461. Google Scholar  M. del Pino, M. Musso and J. C. Wei, Type Ⅱ blow-up in the 5-dimensional energy critical heat equation, Acta Mathematica Sinica (Engl. Ser.), 35 (2019), 1027-1042.  doi: 10.1007/s10114-019-8341-5.  Google Scholar  T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type Ⅱ blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.  doi: 10.4171/JEMS/261.  Google Scholar  C. J. Fan, Log-log blow up solutions blow up at exactly m points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1429-1482.  doi: 10.1016/j.anihpc.2016.11.002.  Google Scholar  S. Filippas, M. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2957-2982.  doi: 10.1098/rspa.2000.0648.  Google Scholar  H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+a}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. Google Scholar  Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar  Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar  Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar  M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), 141-145. Google Scholar  M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Unpublished. Google Scholar  J. Jendrej, Construction of type Ⅱ blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., 272 (2017), 866-917.  doi: 10.1016/j.jfa.2016.10.019.  Google Scholar  D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508.  Google Scholar  C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar  J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^{1}( \mathbb R^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.  doi: 10.1215/00127094-2009-005.  Google Scholar  H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.  Google Scholar  H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021.  Google Scholar  H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025.  Google Scholar  F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.  Google Scholar  F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar  N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012.  Google Scholar  P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007. Google Scholar  P. Raphaël and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., 66 (2013), 414-480.  doi: 10.1002/cpa.21435.  Google Scholar  R. Schweyer, Type Ⅱ blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983.  doi: 10.1016/j.jfa.2012.09.015.  Google Scholar

show all references

##### References:
  C. Collot, Nonradial type Ⅱ blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252.  doi: 10.2140/apde.2017.10.127.  Google Scholar  C. Collot, F. Merle and P. Raphael, On strongly anisotropic type Ⅱ blow up, preprint, arXiv: 1709.04941. Google Scholar  C. Collot, P. Raphaël and J. Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Mem. Amer. Math. Soc. 260. (2019), arXiv: 1605.07337. doi: 10.1090/memo/1255.  Google Scholar  C. Cortázar, M. del Pino and M. Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear. Google Scholar  P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., 738 (2018), 1-71.  doi: 10.1515/crelle-2015-0048.  Google Scholar  J. Dávila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. arXiv: 1702.05801. Google Scholar  J. Dávila, M. del Pino, C. Pesce and J. Wei, Blow-up for the 3-dimensional axially symmetric harmonic map flow into $\mathbb{S}^2$, Discrete Contin. Dyn. Syst., to appear. Google Scholar  M. del Pino, M. Musso and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE, to appear. Google Scholar  M. del Pino, M. Musso and J. Wei, Geometry driven Type Ⅱ higher dimensional blow-up for the critical heat equation, preprint, arXiv: 1710.11461. Google Scholar  M. del Pino, M. Musso and J. C. Wei, Type Ⅱ blow-up in the 5-dimensional energy critical heat equation, Acta Mathematica Sinica (Engl. Ser.), 35 (2019), 1027-1042.  doi: 10.1007/s10114-019-8341-5.  Google Scholar  T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type Ⅱ blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.  doi: 10.4171/JEMS/261.  Google Scholar  C. J. Fan, Log-log blow up solutions blow up at exactly m points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1429-1482.  doi: 10.1016/j.anihpc.2016.11.002.  Google Scholar  S. Filippas, M. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2957-2982.  doi: 10.1098/rspa.2000.0648.  Google Scholar  H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+a}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. Google Scholar  Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar  Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar  Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar  M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), 141-145. Google Scholar  M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Unpublished. Google Scholar  J. Jendrej, Construction of type Ⅱ blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., 272 (2017), 866-917.  doi: 10.1016/j.jfa.2016.10.019.  Google Scholar  D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508.  Google Scholar  C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar  J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^{1}( \mathbb R^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.  doi: 10.1215/00127094-2009-005.  Google Scholar  H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.  Google Scholar  H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021.  Google Scholar  H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025.  Google Scholar  F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.  Google Scholar  F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar  N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012.  Google Scholar  P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007. Google Scholar  P. Raphaël and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., 66 (2013), 414-480.  doi: 10.1002/cpa.21435.  Google Scholar  R. Schweyer, Type Ⅱ blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983.  doi: 10.1016/j.jfa.2012.09.015.  Google Scholar
  Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216  Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264  Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259  Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158  Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $L^2$-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136  Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268  Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258  Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120  Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108  Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079  Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260  Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323  Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

2019 Impact Factor: 1.338