June  2020, 40(6): 3171-3200. doi: 10.3934/dcds.2020054

On the spectral theory of positive operators and PDE applications

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China

3. 

Department of Mathematics, University of California San Diego, San Diego CA92093, USA

* Corresponding author: Xuefeng Wang

** Current address: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
Dedicated to the 70th birthday of Professor Wei-Ming Ni

Received  April 2019 Revised  June 2019 Published  October 2019

Fund Project: KCC is supported by NSFC-11371038.
XFW is supported by NSFC-11671190 and NSFC-11731005

The strong version of the Krein-Rutman theorem requires that the positive cone of the Banach space has nonempty interior and the compact map is strongly positive, mapping nonzero points in the cone into its interior. In this paper, we first generalize this version of the Krein-Rutman theorem to the case of "semi-strongly positive" operators; and we prove it in a totally elementary fashion. We then prove the equivalence of semi-strong positivity and irreducibility in a Banach lattice, linking the afore-mentioned result with the Krein-Rutman theorem for irreducible operators. One of the things we emphasize is to use "upper and lower spectral radii" to characterize, in the fashion of Collatz-Wielandt formula for nonnegative irreducible matrices, the principal eigenvalue of these operators. For reducible operators, we prove that the lower spectral radius always serves as the least upper bound of the set of eigenvalues pertaining to positive eigenvectors, and the upper spectral radius the greatest lower bound of the set. Finally, we demonstrate the full power of these Krein-Rutman theorems on some PDE examples such as elliptic eigenvalue problems on non-smooth domains, and cooperative systems which may or may not be fully coupled, by using as few PDE tools as possible.

Citation: Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054
References:
[1]

M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, 19 (1964), 53-161.   Google Scholar

[2]

N. D. Alikakos and G. Fusco, A dynamical systems proof of the Kre$\check{{\rm i }}$n-Rutman theorem and an extension of the Perron theorem, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 209-214.  doi: 10.1017/S0308210500024689.  Google Scholar

[3]

J. Barta, Sur la vibration fondamentale d'une membrane, C. R. Acad. Sci. Paris, 204 (1937), 472-473.   Google Scholar

[4]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[5]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[6]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math, 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[7]

I. Birindelli, Hopf's lemma and anti-maximum principle in general domains, J. Diff. Eqs., 119 (1995), 450-472.  doi: 10.1006/jdeq.1995.1098.  Google Scholar

[8]

I. BirindelliÉ. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differential Equations, 35 (1999), 326-334.   Google Scholar

[9]

K. C. Chang, A nonlinear Krein Rutmann theorem, J. Syst Sci Complex, 22 (2009), 542-544.  doi: 10.1007/s11424-009-9186-2.  Google Scholar

[10]

K. C. Chang, Nonlinear extensions of the Perron-Frobenius theorem and the Krein-Rutman theorem, Journal of Fixed Point Theory and Applications, 15 (2014), 433-457.  doi: 10.1007/s11784-014-0191-2.  Google Scholar

[11]

L. Collatz, Einschliessungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1946), 221-226.  doi: 10.1007/BF01180013.  Google Scholar

[12]

K. Deimling, Nonlinear Functional Analysis, Spronger-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[13]

N. S. Gao, Extensions of Perron-Frobenius theory, Positivity, 17 (2013), 965-977.  doi: 10.1007/s11117-012-0215-3.  Google Scholar

[14]

G. Geymonat and P. Grisvard, Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici, Rend. Sem. Mat. Univ. Padova, 38 (1967), 121-173.   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

J. J. Grobler and C. J. Reinecke, On principal T-bands in a Banach lattice, Integr. equ. oper. theory, 28 (1997), 444-465.  doi: 10.1007/BF01309156.  Google Scholar

[17] Z.-Z. Guan, Lectures on functional, Analysis, High Education Press, 1958.   Google Scholar
[18]

R.-J. Jang-Lewis and H. D. Jr Victory, On the ideal structure of positive, eventually compact linear operators on Banach lattices, Pacific Journal of Mathematics, 157 (1993), 57-85.  doi: 10.2140/pjm.1993.157.57.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

M. G. Kre$\check{{\rm i }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N.S.), 3 (1948), 3-95.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Asymptotic bahavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Diff Eqs, 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.  Google Scholar

[22]

F. Li, J. Coville and X. F. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete and Continuous Dynamical Systems, 37 (2017), 879–903. doi: 10.3934/dcds.2017036.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[24]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[25]

F. Niiro and I. Sawashima, On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer, Sci. Papers College Gen. Ed. Univ. Tokyo, 16 (1966), 145-183.   Google Scholar

[26]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bulll. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[28]

M. H. Protter and H. F. Weinberger, Maximum Principles in Diffenretial Equations, Prentice Hall, Inc., Englewood Cliffs, 1967.  Google Scholar

[29]

I. Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.   Google Scholar

[30]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[31]

H. H. Schaefer, Some spectral properties of positive linear operators, Pascific J. Math., 10 (1960), 1009-1019.  doi: 10.2140/pjm.1960.10.1009.  Google Scholar

[32]

H. H. Schaefer, Topological Vector Spaces, 3rd edition, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[33]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqs., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 258. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[35]

G. Sweers, Strong positivity in C() for elliptic systems, Math. Z., 209 (1992), 252-271.  doi: 10.1007/BF02570833.  Google Scholar

[36]

P. Takáč, A short elementary proof of the Kre$\check{{\rm i }}$n-Rutman Theorem, Houston J. Math., 20 (1994), 93-98.   Google Scholar

[37]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, Trends Math., Birkhäuser/Springer, Cham, (2016), 415–467. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[38]

W. Walter, A theorem on elliptic differential inequalities and applications to gradient bounds, Math Z., 200 (1989), 293-299.  doi: 10.1007/BF01230289.  Google Scholar

[39]

H. Wiedlandt, Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), 642-648.  doi: 10.1007/BF02230720.  Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-4566-7.  Google Scholar

show all references

References:
[1]

M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, 19 (1964), 53-161.   Google Scholar

[2]

N. D. Alikakos and G. Fusco, A dynamical systems proof of the Kre$\check{{\rm i }}$n-Rutman theorem and an extension of the Perron theorem, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 209-214.  doi: 10.1017/S0308210500024689.  Google Scholar

[3]

J. Barta, Sur la vibration fondamentale d'une membrane, C. R. Acad. Sci. Paris, 204 (1937), 472-473.   Google Scholar

[4]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[5]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[6]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math, 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[7]

I. Birindelli, Hopf's lemma and anti-maximum principle in general domains, J. Diff. Eqs., 119 (1995), 450-472.  doi: 10.1006/jdeq.1995.1098.  Google Scholar

[8]

I. BirindelliÉ. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differential Equations, 35 (1999), 326-334.   Google Scholar

[9]

K. C. Chang, A nonlinear Krein Rutmann theorem, J. Syst Sci Complex, 22 (2009), 542-544.  doi: 10.1007/s11424-009-9186-2.  Google Scholar

[10]

K. C. Chang, Nonlinear extensions of the Perron-Frobenius theorem and the Krein-Rutman theorem, Journal of Fixed Point Theory and Applications, 15 (2014), 433-457.  doi: 10.1007/s11784-014-0191-2.  Google Scholar

[11]

L. Collatz, Einschliessungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1946), 221-226.  doi: 10.1007/BF01180013.  Google Scholar

[12]

K. Deimling, Nonlinear Functional Analysis, Spronger-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[13]

N. S. Gao, Extensions of Perron-Frobenius theory, Positivity, 17 (2013), 965-977.  doi: 10.1007/s11117-012-0215-3.  Google Scholar

[14]

G. Geymonat and P. Grisvard, Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici, Rend. Sem. Mat. Univ. Padova, 38 (1967), 121-173.   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

J. J. Grobler and C. J. Reinecke, On principal T-bands in a Banach lattice, Integr. equ. oper. theory, 28 (1997), 444-465.  doi: 10.1007/BF01309156.  Google Scholar

[17] Z.-Z. Guan, Lectures on functional, Analysis, High Education Press, 1958.   Google Scholar
[18]

R.-J. Jang-Lewis and H. D. Jr Victory, On the ideal structure of positive, eventually compact linear operators on Banach lattices, Pacific Journal of Mathematics, 157 (1993), 57-85.  doi: 10.2140/pjm.1993.157.57.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

M. G. Kre$\check{{\rm i }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N.S.), 3 (1948), 3-95.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Asymptotic bahavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Diff Eqs, 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.  Google Scholar

[22]

F. Li, J. Coville and X. F. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete and Continuous Dynamical Systems, 37 (2017), 879–903. doi: 10.3934/dcds.2017036.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[24]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[25]

F. Niiro and I. Sawashima, On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer, Sci. Papers College Gen. Ed. Univ. Tokyo, 16 (1966), 145-183.   Google Scholar

[26]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bulll. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[28]

M. H. Protter and H. F. Weinberger, Maximum Principles in Diffenretial Equations, Prentice Hall, Inc., Englewood Cliffs, 1967.  Google Scholar

[29]

I. Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.   Google Scholar

[30]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[31]

H. H. Schaefer, Some spectral properties of positive linear operators, Pascific J. Math., 10 (1960), 1009-1019.  doi: 10.2140/pjm.1960.10.1009.  Google Scholar

[32]

H. H. Schaefer, Topological Vector Spaces, 3rd edition, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[33]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqs., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 258. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[35]

G. Sweers, Strong positivity in C() for elliptic systems, Math. Z., 209 (1992), 252-271.  doi: 10.1007/BF02570833.  Google Scholar

[36]

P. Takáč, A short elementary proof of the Kre$\check{{\rm i }}$n-Rutman Theorem, Houston J. Math., 20 (1994), 93-98.   Google Scholar

[37]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, Trends Math., Birkhäuser/Springer, Cham, (2016), 415–467. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[38]

W. Walter, A theorem on elliptic differential inequalities and applications to gradient bounds, Math Z., 200 (1989), 293-299.  doi: 10.1007/BF01230289.  Google Scholar

[39]

H. Wiedlandt, Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), 642-648.  doi: 10.1007/BF02230720.  Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-4566-7.  Google Scholar

[1]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (376)
  • HTML views (283)
  • Cited by (0)

Other articles
by authors

[Back to Top]