doi: 10.3934/dcds.2020054

On the spectral theory of positive operators and PDE applications

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China

3. 

Department of Mathematics, University of California San Diego, San Diego CA92093, USA

* Corresponding author: Xuefeng Wang

** Current address: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
Dedicated to the 70th birthday of Professor Wei-Ming Ni

Received  April 2019 Revised  June 2019 Published  October 2019

Fund Project: KCC is supported by NSFC-11371038.
XFW is supported by NSFC-11671190 and NSFC-10730005

The strong version of the Krein-Rutman theorem requires that the positive cone of the Banach space has nonempty interior and the compact map is strongly positive, mapping nonzero points in the cone into its interior. In this paper, we first generalize this version of the Krein-Rutman theorem to the case of "semi-strongly positive" operators; and we prove it in a totally elementary fashion. We then prove the equivalence of semi-strong positivity and irreducibility in a Banach lattice, linking the afore-mentioned result with the Krein-Rutman theorem for irreducible operators. One of the things we emphasize is to use "upper and lower spectral radii" to characterize, in the fashion of Collatz-Wielandt formula for nonnegative irreducible matrices, the principal eigenvalue of these operators. For reducible operators, we prove that the lower spectral radius always serves as the least upper bound of the set of eigenvalues pertaining to positive eigenvectors, and the upper spectral radius the greatest lower bound of the set. Finally, we demonstrate the full power of these Krein-Rutman theorems on some PDE examples such as elliptic eigenvalue problems on non-smooth domains, and cooperative systems which may or may not be fully coupled, by using as few PDE tools as possible.

Citation: Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020054
References:
[1]

M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, 19 (1964), 53-161.   Google Scholar

[2]

N. D. Alikakos and G. Fusco, A dynamical systems proof of the Kre$\check{{\rm i }}$n-Rutman theorem and an extension of the Perron theorem, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 209-214.  doi: 10.1017/S0308210500024689.  Google Scholar

[3]

J. Barta, Sur la vibration fondamentale d'une membrane, C. R. Acad. Sci. Paris, 204 (1937), 472-473.   Google Scholar

[4]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[5]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[6]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math, 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[7]

I. Birindelli, Hopf's lemma and anti-maximum principle in general domains, J. Diff. Eqs., 119 (1995), 450-472.  doi: 10.1006/jdeq.1995.1098.  Google Scholar

[8]

I. BirindelliÉ. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differential Equations, 35 (1999), 326-334.   Google Scholar

[9]

K. C. Chang, A nonlinear Krein Rutmann theorem, J. Syst Sci Complex, 22 (2009), 542-544.  doi: 10.1007/s11424-009-9186-2.  Google Scholar

[10]

K. C. Chang, Nonlinear extensions of the Perron-Frobenius theorem and the Krein-Rutman theorem, Journal of Fixed Point Theory and Applications, 15 (2014), 433-457.  doi: 10.1007/s11784-014-0191-2.  Google Scholar

[11]

L. Collatz, Einschliessungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1946), 221-226.  doi: 10.1007/BF01180013.  Google Scholar

[12]

K. Deimling, Nonlinear Functional Analysis, Spronger-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[13]

N. S. Gao, Extensions of Perron-Frobenius theory, Positivity, 17 (2013), 965-977.  doi: 10.1007/s11117-012-0215-3.  Google Scholar

[14]

G. Geymonat and P. Grisvard, Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici, Rend. Sem. Mat. Univ. Padova, 38 (1967), 121-173.   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

J. J. Grobler and C. J. Reinecke, On principal T-bands in a Banach lattice, Integr. equ. oper. theory, 28 (1997), 444-465.  doi: 10.1007/BF01309156.  Google Scholar

[17] Z.-Z. Guan, Lectures on functional, Analysis, High Education Press, 1958.   Google Scholar
[18]

R.-J. Jang-Lewis and H. D. Jr Victory, On the ideal structure of positive, eventually compact linear operators on Banach lattices, Pacific Journal of Mathematics, 157 (1993), 57-85.  doi: 10.2140/pjm.1993.157.57.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

M. G. Kre$\check{{\rm i }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N.S.), 3 (1948), 3-95.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Asymptotic bahavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Diff Eqs, 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.  Google Scholar

[22]

F. Li, J. Coville and X. F. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete and Continuous Dynamical Systems, 37 (2017), 879–903. doi: 10.3934/dcds.2017036.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[24]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[25]

F. Niiro and I. Sawashima, On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer, Sci. Papers College Gen. Ed. Univ. Tokyo, 16 (1966), 145-183.   Google Scholar

[26]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bulll. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[28]

M. H. Protter and H. F. Weinberger, Maximum Principles in Diffenretial Equations, Prentice Hall, Inc., Englewood Cliffs, 1967.  Google Scholar

[29]

I. Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.   Google Scholar

[30]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[31]

H. H. Schaefer, Some spectral properties of positive linear operators, Pascific J. Math., 10 (1960), 1009-1019.  doi: 10.2140/pjm.1960.10.1009.  Google Scholar

[32]

H. H. Schaefer, Topological Vector Spaces, 3rd edition, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[33]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqs., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 258. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[35]

G. Sweers, Strong positivity in C() for elliptic systems, Math. Z., 209 (1992), 252-271.  doi: 10.1007/BF02570833.  Google Scholar

[36]

P. Takáč, A short elementary proof of the Kre$\check{{\rm i }}$n-Rutman Theorem, Houston J. Math., 20 (1994), 93-98.   Google Scholar

[37]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, Trends Math., Birkhäuser/Springer, Cham, (2016), 415–467. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[38]

W. Walter, A theorem on elliptic differential inequalities and applications to gradient bounds, Math Z., 200 (1989), 293-299.  doi: 10.1007/BF01230289.  Google Scholar

[39]

H. Wiedlandt, Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), 642-648.  doi: 10.1007/BF02230720.  Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-4566-7.  Google Scholar

show all references

References:
[1]

M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, 19 (1964), 53-161.   Google Scholar

[2]

N. D. Alikakos and G. Fusco, A dynamical systems proof of the Kre$\check{{\rm i }}$n-Rutman theorem and an extension of the Perron theorem, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), 209-214.  doi: 10.1017/S0308210500024689.  Google Scholar

[3]

J. Barta, Sur la vibration fondamentale d'une membrane, C. R. Acad. Sci. Paris, 204 (1937), 472-473.   Google Scholar

[4]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[5]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[6]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math, 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[7]

I. Birindelli, Hopf's lemma and anti-maximum principle in general domains, J. Diff. Eqs., 119 (1995), 450-472.  doi: 10.1006/jdeq.1995.1098.  Google Scholar

[8]

I. BirindelliÉ. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differential Equations, 35 (1999), 326-334.   Google Scholar

[9]

K. C. Chang, A nonlinear Krein Rutmann theorem, J. Syst Sci Complex, 22 (2009), 542-544.  doi: 10.1007/s11424-009-9186-2.  Google Scholar

[10]

K. C. Chang, Nonlinear extensions of the Perron-Frobenius theorem and the Krein-Rutman theorem, Journal of Fixed Point Theory and Applications, 15 (2014), 433-457.  doi: 10.1007/s11784-014-0191-2.  Google Scholar

[11]

L. Collatz, Einschliessungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1946), 221-226.  doi: 10.1007/BF01180013.  Google Scholar

[12]

K. Deimling, Nonlinear Functional Analysis, Spronger-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[13]

N. S. Gao, Extensions of Perron-Frobenius theory, Positivity, 17 (2013), 965-977.  doi: 10.1007/s11117-012-0215-3.  Google Scholar

[14]

G. Geymonat and P. Grisvard, Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici, Rend. Sem. Mat. Univ. Padova, 38 (1967), 121-173.   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

J. J. Grobler and C. J. Reinecke, On principal T-bands in a Banach lattice, Integr. equ. oper. theory, 28 (1997), 444-465.  doi: 10.1007/BF01309156.  Google Scholar

[17] Z.-Z. Guan, Lectures on functional, Analysis, High Education Press, 1958.   Google Scholar
[18]

R.-J. Jang-Lewis and H. D. Jr Victory, On the ideal structure of positive, eventually compact linear operators on Banach lattices, Pacific Journal of Mathematics, 157 (1993), 57-85.  doi: 10.2140/pjm.1993.157.57.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

M. G. Kre$\check{{\rm i }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N.S.), 3 (1948), 3-95.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Asymptotic bahavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Diff Eqs, 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.  Google Scholar

[22]

F. Li, J. Coville and X. F. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete and Continuous Dynamical Systems, 37 (2017), 879–903. doi: 10.3934/dcds.2017036.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[24]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[25]

F. Niiro and I. Sawashima, On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer, Sci. Papers College Gen. Ed. Univ. Tokyo, 16 (1966), 145-183.   Google Scholar

[26]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bulll. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[28]

M. H. Protter and H. F. Weinberger, Maximum Principles in Diffenretial Equations, Prentice Hall, Inc., Englewood Cliffs, 1967.  Google Scholar

[29]

I. Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.   Google Scholar

[30]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[31]

H. H. Schaefer, Some spectral properties of positive linear operators, Pascific J. Math., 10 (1960), 1009-1019.  doi: 10.2140/pjm.1960.10.1009.  Google Scholar

[32]

H. H. Schaefer, Topological Vector Spaces, 3rd edition, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[33]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqs., 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 258. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[35]

G. Sweers, Strong positivity in C() for elliptic systems, Math. Z., 209 (1992), 252-271.  doi: 10.1007/BF02570833.  Google Scholar

[36]

P. Takáč, A short elementary proof of the Kre$\check{{\rm i }}$n-Rutman Theorem, Houston J. Math., 20 (1994), 93-98.   Google Scholar

[37]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, Trends Math., Birkhäuser/Springer, Cham, (2016), 415–467. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[38]

W. Walter, A theorem on elliptic differential inequalities and applications to gradient bounds, Math Z., 200 (1989), 293-299.  doi: 10.1007/BF01230289.  Google Scholar

[39]

H. Wiedlandt, Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), 642-648.  doi: 10.1007/BF02230720.  Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-4566-7.  Google Scholar

[1]

X. X. Huang, Xiaoqi Yang, K. L. Teo. A smoothing scheme for optimization problems with Max-Min constraints. Journal of Industrial & Management Optimization, 2007, 3 (2) : 209-222. doi: 10.3934/jimo.2007.3.209

[2]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[3]

José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

[4]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[5]

Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019

[6]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[7]

John Mallet-Paret, Roger D. Nussbaum. Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 519-562. doi: 10.3934/dcds.2002.8.519

[8]

Soña Pavlíková, Daniel Ševčovič. On construction of upper and lower bounds for the HOMO-LUMO spectral gap. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 53-69. doi: 10.3934/naco.2019005

[9]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[10]

Jianxin Zhou. Optimization with some uncontrollable variables: a min-equilibrium approach. Journal of Industrial & Management Optimization, 2007, 3 (1) : 129-138. doi: 10.3934/jimo.2007.3.129

[11]

Wenxing Zhu, Yanpo Liu, Geng Lin. Speeding up a memetic algorithm for the max-bisection problem. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 151-168. doi: 10.3934/naco.2015.5.151

[12]

Blaine Keetch, Yves Van Gennip. A Max-Cut approximation using a graph based MBO scheme. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6091-6139. doi: 10.3934/dcdsb.2019132

[13]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

[14]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[15]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[16]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[17]

Getachew K. Befekadu, Panos J. Antsaklis. On noncooperative $n$-player principal eigenvalue games. Journal of Dynamics & Games, 2015, 2 (1) : 51-63. doi: 10.3934/jdg.2015.2.51

[18]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[19]

Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665

[20]

Leah Anderson, Thomas Pumir, Dimitrios Triantafyllos, Alexandre M. Bayen. Stability and implementation of a cycle-based max pressure controller for signalized traffic networks. Networks & Heterogeneous Media, 2018, 13 (2) : 241-260. doi: 10.3934/nhm.2018011

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (44)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]