In this paper we survey some results concerning the construction of spike-layers, namely solutions to singularly perturbed equations that exhibit a concentration behaviour. Their study is motivated by the analysis of pattern formation in biological systems such as the Keller-Segel or the Gierer-Meinhardt's. We describe some general perturbative variational strategy useful to study concentration at points, and also at spheres in radially symmetric situations.
Citation: |
[1] |
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.
![]() |
[2] |
A. Ambrosetti and A. Malchiodi, Perturbation methods and semilinear elliptic problems on $ \mathbb{R}^N$, Birkhäuser, Progr. in Math., 240 (2005).
![]() |
[3] |
A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. Ⅰ, Comm. Math. Phys., 235 (2003), 427-466.
![]() |
[4] |
A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. Ⅱ, Indiana Univ. Math. J., 53 (2004), 297-329.
doi: 10.1512/iumj.2004.53.2400.![]() ![]() ![]() |
[5] |
W. W. Ao, M. Musso and J. C. Wei, Triple junction solutions for a singularly perturbed Neumann problem, SIAM J. Math. Anal., 43 (2011), 2519-2541.
doi: 10.1137/100812100.![]() ![]() ![]() |
[6] |
W. W. Ao, H. Chan and J. C. Wei, Boundary concentrations on segments for the Lin-Ni-Takagi problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 653-696.
![]() ![]() |
[7] |
M. Badiale and T. D'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 947-985.
doi: 10.1016/S0362-546X(01)00717-9.![]() ![]() ![]() |
[8] |
T. Bartsch and S. J. Peng, Solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations. I, Indiana Univ. Math. J., 57 (2008), 1599-1631.
doi: 10.1512/iumj.2008.57.3243.![]() ![]() ![]() |
[9] |
T. Bartsch and S. J. Peng, Solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations. Ⅱ, J. Differential Equations, 248 (2010), 2746-2767.
doi: 10.1016/j.jde.2010.02.014.![]() ![]() ![]() |
[10] |
V. Benci and T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, 184 (2002), 109-138.
doi: 10.1006/jdeq.2001.4138.![]() ![]() ![]() |
[11] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[12] |
D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 74, 35 pp.
doi: 10.1007/s00526-017-1163-3.![]() ![]() ![]() |
[13] |
R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq., 27 (1978), 266-273.
doi: 10.1016/0022-0396(78)90033-5.![]() ![]() ![]() |
[14] |
E. N. Dancer and S. S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262.
doi: 10.2140/pjm.1999.189.241.![]() ![]() ![]() |
[15] |
J. Davila, A. Pistoia and G. Vaira, Bubbling solutions for supercritical problems on manifolds, J. Math. Pures Appl., 103 (2015), 1410-1440.
doi: 10.1016/j.matpur.2014.11.004.![]() ![]() ![]() |
[16] |
M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
[17] |
M. del Pino and P. L. Felmer, Semi-classcal states for nonlinear Schröedinger equations, J. Funct. Anal., 149 (1997), 245-265.
doi: 10.1006/jfan.1996.3085.![]() ![]() ![]() |
[18] |
M. del Pino, P. L. Felmer and J. C. Wei, On the role of the mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79.
doi: 10.1137/S0036141098332834.![]() ![]() ![]() |
[19] |
M. del Pino, M. Kowalczyk and J.-C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135.![]() ![]() ![]() |
[20] |
M. del Pino, M. Kowalczyk, F. Pacard and J. C. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516.
doi: 10.1016/j.aim.2010.01.003.![]() ![]() ![]() |
[21] |
M. del Pino, F. Mahmoudi and M. Musso, Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents, J. Eur. Math. Soc. (JEMS), 16 (2014), 1687-1748.
doi: 10.4171/JEMS/473.![]() ![]() ![]() |
[22] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[23] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
[24] |
A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.
![]() |
[25] |
M. Grossi, A. Pistoia and J. C. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations, 11 (2000), 143-175.
doi: 10.1007/PL00009907.![]() ![]() ![]() |
[26] |
C. F. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9.![]() ![]() ![]() |
[27] |
C. F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52 (2000), 522-538.
doi: 10.4153/CJM-2000-024-x.![]() ![]() ![]() |
[28] |
C. F. Gui, J. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.
doi: 10.1016/S0294-1449(99)00104-3.![]() ![]() ![]() |
[29] |
Y. Guo and J. Yang, Concentration on surfaces for a singularly perturbed Neumann problem in three-dimensional domains, J. Differential Equations, 255 (2013), 2220-2266.
doi: 10.1016/j.jde.2013.06.011.![]() ![]() ![]() |
[30] |
M. K. Kwong, Uniqueness of positive solutions of $- \Delta u + u + u^p = 0$ in $ \mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
[31] |
Y. Y. Li, On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations, 23 (1998), 487-545.
doi: 10.1080/03605309808821354.![]() ![]() ![]() |
[32] |
Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490.
doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z.![]() ![]() ![]() |
[33] |
C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
[34] |
F.-H. Lin, W.-M. Ni and J.-C. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139.![]() ![]() ![]() |
[35] |
F. Mahmoudi and A. Malchiodi, Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., 209 (2007), 460-525.
doi: 10.1016/j.aim.2006.05.014.![]() ![]() ![]() |
[36] |
F. Mahmoudi, A. Malchiodi and M. Montenegro, Solutions to the nonlinear Schr inger equation carrying momentum along a curve, Comm. Pure Appl. Math., 62 (2009), 1155-1264.
![]() |
[37] |
F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold, Geom. Funct. Anal., 16 (2006), 924-958.
doi: 10.1007/s00039-006-0566-7.![]() ![]() ![]() |
[38] |
F. Mahmoudi, F. Sáchez and W. Yao, On the Ambrosetti-Malchiodi-Ni conjecture for general submanifolds, J. Differential Equations, 258 (2015), 243-280.
doi: 10.1016/j.jde.2014.09.010.![]() ![]() ![]() |
[39] |
A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal., 15 (2005), 1162-1222.
doi: 10.1007/s00039-005-0542-7.![]() ![]() ![]() |
[40] |
A. Malchiodi, Construction of multidimensional spike-layers, Discrete Contin. Dyn. Syst., 14 (2006), 187-202.
doi: 10.3934/dcds.2006.14.187.![]() ![]() ![]() |
[41] |
A. Malchiodi, Some new entire solutions of semilinear elliptic equations on $ \mathbb{R}^N$, Adv. Math., 221 (2009), 1843-1909.
doi: 10.1016/j.aim.2009.03.012.![]() ![]() ![]() |
[42] |
A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math, 15 (2002), 1507-1568.
doi: 10.1002/cpa.10049.![]() ![]() ![]() |
[43] |
A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5.![]() ![]() ![]() |
[44] |
A. Malchiodi, W.-M. Ni and J.-C. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143-163.
doi: 10.1016/j.anihpc.2004.05.003.![]() ![]() ![]() |
[45] |
H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.
doi: 10.2977/prims/1195188180.![]() ![]() ![]() |
[46] |
R. Mazzeo and F. Pacard, Foliations by constant mean curvature tubes, Comm. Anal. Geom., 13 (2005), 633-670.
doi: 10.4310/CAG.2005.v13.n4.a1.![]() ![]() ![]() |
[47] |
W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.
![]() ![]() |
[48] |
W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc., 297 (1986), 351-368.
doi: 10.1090/S0002-9947-1986-0849484-2.![]() ![]() ![]() |
[49] |
W.-M. Ni and I. Takagi, On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851.
doi: 10.1002/cpa.3160440705.![]() ![]() ![]() |
[50] |
W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4.![]() ![]() ![]() |
[51] |
W.-M. Ni, I. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model. Recent topics in mathematics moving toward science and engineering, Japan J. Indust. Appl. Math., 18 (2001), 259-272.
doi: 10.1007/BF03168574.![]() ![]() ![]() |
[52] |
W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.
doi: 10.1002/cpa.3160480704.![]() ![]() ![]() |
[53] |
Y.-G. Oh, On positive Multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Comm. Math. Phys., 131 (1990), 223-253.
doi: 10.1007/BF02161413.![]() ![]() ![]() |
[54] |
S. Santra and J. C. Wei, New entire positive solution for the nonlinear Schräinger equation: Coexistence of fronts and bumps, Amer. J. Math., 135 (2013), 443-491.
doi: 10.1353/ajm.2013.0014.![]() ![]() ![]() |
[55] |
J. P. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354 (2002), 3117-3154.
doi: 10.1090/S0002-9947-02-03007-6.![]() ![]() ![]() |
[56] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517.![]() ![]() ![]() |
[57] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.![]() ![]() ![]() |
[58] |
L. P. Wang, J. C. Wei and J. Yang, On Ambrosetti-Malchiodi-Ni conjecture for general hypersurfaces, Comm. Partial Differential Equations, 36 (2011), 2117-2161.
doi: 10.1080/03605302.2011.580033.![]() ![]() ![]() |
[59] |
Z. Q. Wang, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal., 120 (1992), 375-399.
doi: 10.1007/BF00380322.![]() ![]() ![]() |
[60] |
J. C. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333.
doi: 10.1006/jdeq.1996.0120.![]() ![]() ![]() |
[61] |
J. C. Wei, On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218.![]() ![]() ![]() |
[62] |
J. C. Wei and J. Yang, Concentration on lines for a singularly perturbed Neumann problem in two-dimensional domains, Indiana Univ. Math. J., 56 (2007), 3025-3073.
doi: 10.1512/iumj.2007.56.3133.![]() ![]() ![]() |