doi: 10.3934/dcds.2020056

Monotone and nonmonotone clines with partial panmixia across a geographical barrier

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China

* Corresponding author: sull@sustech.edu.cn

Received  July 2019 Revised  August 2019 Published  October 2019

The number of clines (i.e., nonconstant equilibria) maintained by viability selection, migration, and partial global panmixia in a step-environment with a geographical barrier is investigated. Our results extend the results of T. Nagylaki (2016, Clines with partial panmixia across a geographical barrier, Theor. Popul. Biol. 109) from the no dominance case to arbitrary dominance and to various other selection functions. Unexpectedly, besides the usual monotone clines, we discover nonmonotone clines with both equal and unequal limits at $ \pm\infty $.

Citation: Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020056
References:
[1]

R. Bürger, A survey of migration-selection models in population genetics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 883-959.  doi: 10.3934/dcdsb.2014.19.883.  Google Scholar

[2]

G. Feltrin and E. Sovrano, Three positive solutions to an indefinite Neumann problem: A shooting method, Nonlinear Anal., 166 (2018), 87-101.  doi: 10.1016/j.na.2017.10.006.  Google Scholar

[3]

G. Feltrin and E. Sovrano, An indefinite nonlinear problem in population dynamics: High multiplicity of positive solutions, Nonlinearity, 31 (2018), 4137-4161.  doi: 10.1088/1361-6544/aac8bb.  Google Scholar

[4]

P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal., 64 (1977), 93-109.  doi: 10.1007/BF00280092.  Google Scholar

[5]

J. Hofbauer and L. L. Su, Global stability in diallelic migration-selection models, J. Math. Anal. Appl., 428 (2018), 677-695.  doi: 10.1016/j.jmaa.2015.03.034.  Google Scholar

[6]

J. Hofbauer and L. L. Su, Global stability of spatially homogeneous equilibria in migration-selection models, SIAM J. Appl. Math., 76 (2016), 578-597.  doi: 10.1137/15M1027504.  Google Scholar

[7]

F. LiK. Nakashima and W.-M. Ni, Non-local effects in an integro-PDE model from population genetics, Eur. J. Appl. Math., 28 (2017), 1-41.  doi: 10.1017/S0956792515000601.  Google Scholar

[8]

Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.  Google Scholar

[9]

Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 204 (2004), 292-322.  doi: 10.1016/j.jde.2004.01.009.  Google Scholar

[10]

Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection without dominance, J. Differential Equations, 225 (2006), 624-665.  doi: 10.1016/j.jde.2006.01.012.  Google Scholar

[11]

Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.  Google Scholar

[12]

Y. LouT. Nagylaki and L. L. Su, An integro-PDE model from population genetics, J. Differential Equations, 254 (2013), 2367-2392.  doi: 10.1016/j.jde.2012.12.006.  Google Scholar

[13]

T. Nagylaki, The diffusion model for migration and selection, Some Mathematical Questions in Biology—Models in Population Biology, Lectures Math. Life Sci., Amer. Math. Soc., Providence, RI, 20 (1989), 55-75.   Google Scholar

[14]

T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol., 81 (2012), 45-68.  doi: 10.1016/j.tpb.2011.09.006.  Google Scholar

[15]

T. Nagylaki, Clines with partial panmixia in an unbounded unidimensional habitat, Theor. Popul. Biol., 82 (2012), 22-28.  doi: 10.1016/j.tpb.2012.02.008.  Google Scholar

[16]

T. Nagylaki, Clines with partial panmixia across a geographical barrier, Theor. Popul. Biol., 109 (2016), 28-43.  doi: 10.1016/j.tpb.2016.01.002.  Google Scholar

[17]

T. Nagylaki and Y. Lou, The dynamics of migration-selection models, Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., Math. Biosci. Subser., Springer, Berlin, 1922 (2008), 117-170.  doi: 10.1007/978-3-540-74331-6_4.  Google Scholar

[18]

T. NagylakiL. L. SuI. Alevy and T. F. Dupont, Clines with partial panmixia in an environmental pocket, Theor. Popul. Biol., 95 (2014), 24-32.  doi: 10.1016/j.tpb.2014.05.003.  Google Scholar

[19]

T. Nagylaki, L. L. Su and T. F. Dupont, Uniqueness and multiplicity of clines in an environmental pocket, Theor. Popul. Biol., (2019). doi: 10.1016/j.tpb.2019.07.006.  Google Scholar

[20]

T. Nagylaki and K. Zeng, Clines with complete dominance and partial panmixia in an unbounded unidimensional habitat, Theor. Popul. Biol., 93 (2014), 63-74.   Google Scholar

[21]

T. Nagylaki and K. Zeng, Clines with partial panmixia across a geographical barrier in an environmental pocket, Theor. Popul. Biol., 110 (2016), 1-11.  doi: 10.1016/j.tpb.2016.03.003.  Google Scholar

[22]

K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.  Google Scholar

[23]

K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.  Google Scholar

[24]

K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, submitted. Google Scholar

[25]

J. Piálek and N. H. Barton, The spread of an advantageous allele across a barrier: The effects of random drift and selection against heterozygotes, Genetics, 145 (1997), 493-504.   Google Scholar

[26]

E. Sovrano, A negative answer to a conjecture arising in the study of selection-migration models in population genetics, J. Math. Biol., 76 (2018), 1655-1672.  doi: 10.1007/s00285-017-1185-7.  Google Scholar

[27]

L. L. Su and T. Nagylaki, Clines with directional selection and partial panmixia in an unbounded unidimensional habitat, Discrete Contin. Dyn. Syst., 35 (2015), 1697-1741.  doi: 10.3934/dcds.2015.35.1697.  Google Scholar

show all references

References:
[1]

R. Bürger, A survey of migration-selection models in population genetics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 883-959.  doi: 10.3934/dcdsb.2014.19.883.  Google Scholar

[2]

G. Feltrin and E. Sovrano, Three positive solutions to an indefinite Neumann problem: A shooting method, Nonlinear Anal., 166 (2018), 87-101.  doi: 10.1016/j.na.2017.10.006.  Google Scholar

[3]

G. Feltrin and E. Sovrano, An indefinite nonlinear problem in population dynamics: High multiplicity of positive solutions, Nonlinearity, 31 (2018), 4137-4161.  doi: 10.1088/1361-6544/aac8bb.  Google Scholar

[4]

P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal., 64 (1977), 93-109.  doi: 10.1007/BF00280092.  Google Scholar

[5]

J. Hofbauer and L. L. Su, Global stability in diallelic migration-selection models, J. Math. Anal. Appl., 428 (2018), 677-695.  doi: 10.1016/j.jmaa.2015.03.034.  Google Scholar

[6]

J. Hofbauer and L. L. Su, Global stability of spatially homogeneous equilibria in migration-selection models, SIAM J. Appl. Math., 76 (2016), 578-597.  doi: 10.1137/15M1027504.  Google Scholar

[7]

F. LiK. Nakashima and W.-M. Ni, Non-local effects in an integro-PDE model from population genetics, Eur. J. Appl. Math., 28 (2017), 1-41.  doi: 10.1017/S0956792515000601.  Google Scholar

[8]

Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.  Google Scholar

[9]

Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 204 (2004), 292-322.  doi: 10.1016/j.jde.2004.01.009.  Google Scholar

[10]

Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection without dominance, J. Differential Equations, 225 (2006), 624-665.  doi: 10.1016/j.jde.2006.01.012.  Google Scholar

[11]

Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.  Google Scholar

[12]

Y. LouT. Nagylaki and L. L. Su, An integro-PDE model from population genetics, J. Differential Equations, 254 (2013), 2367-2392.  doi: 10.1016/j.jde.2012.12.006.  Google Scholar

[13]

T. Nagylaki, The diffusion model for migration and selection, Some Mathematical Questions in Biology—Models in Population Biology, Lectures Math. Life Sci., Amer. Math. Soc., Providence, RI, 20 (1989), 55-75.   Google Scholar

[14]

T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol., 81 (2012), 45-68.  doi: 10.1016/j.tpb.2011.09.006.  Google Scholar

[15]

T. Nagylaki, Clines with partial panmixia in an unbounded unidimensional habitat, Theor. Popul. Biol., 82 (2012), 22-28.  doi: 10.1016/j.tpb.2012.02.008.  Google Scholar

[16]

T. Nagylaki, Clines with partial panmixia across a geographical barrier, Theor. Popul. Biol., 109 (2016), 28-43.  doi: 10.1016/j.tpb.2016.01.002.  Google Scholar

[17]

T. Nagylaki and Y. Lou, The dynamics of migration-selection models, Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., Math. Biosci. Subser., Springer, Berlin, 1922 (2008), 117-170.  doi: 10.1007/978-3-540-74331-6_4.  Google Scholar

[18]

T. NagylakiL. L. SuI. Alevy and T. F. Dupont, Clines with partial panmixia in an environmental pocket, Theor. Popul. Biol., 95 (2014), 24-32.  doi: 10.1016/j.tpb.2014.05.003.  Google Scholar

[19]

T. Nagylaki, L. L. Su and T. F. Dupont, Uniqueness and multiplicity of clines in an environmental pocket, Theor. Popul. Biol., (2019). doi: 10.1016/j.tpb.2019.07.006.  Google Scholar

[20]

T. Nagylaki and K. Zeng, Clines with complete dominance and partial panmixia in an unbounded unidimensional habitat, Theor. Popul. Biol., 93 (2014), 63-74.   Google Scholar

[21]

T. Nagylaki and K. Zeng, Clines with partial panmixia across a geographical barrier in an environmental pocket, Theor. Popul. Biol., 110 (2016), 1-11.  doi: 10.1016/j.tpb.2016.03.003.  Google Scholar

[22]

K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.  Google Scholar

[23]

K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.  Google Scholar

[24]

K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, submitted. Google Scholar

[25]

J. Piálek and N. H. Barton, The spread of an advantageous allele across a barrier: The effects of random drift and selection against heterozygotes, Genetics, 145 (1997), 493-504.   Google Scholar

[26]

E. Sovrano, A negative answer to a conjecture arising in the study of selection-migration models in population genetics, J. Math. Biol., 76 (2018), 1655-1672.  doi: 10.1007/s00285-017-1185-7.  Google Scholar

[27]

L. L. Su and T. Nagylaki, Clines with directional selection and partial panmixia in an unbounded unidimensional habitat, Discrete Contin. Dyn. Syst., 35 (2015), 1697-1741.  doi: 10.3934/dcds.2015.35.1697.  Google Scholar

Figure 4.  A sketch of the situation in Remark 4(ⅱ); where (A) shows that the straight line $ \beta(p-\bar p) $ is tangent to the graph of $ f(p) $ at $ p_1 $, and (B) shows the corresponding phase portraits of (15)
Figure 5.  Same as Fig. 4 except that the straight line $ \beta(p-\bar p) $ is tangent to the graph of $ f(p) $ at $ p_2 $
Figure 7.  Phase portraits of (15) in Lemma 3.10 with $ I<II $, $ I = II $, and $ I>II $, respectively; where $ I $ and $ II $ stand for the areas enclosed by the graphs of $ L(p) $ and $ f(p) $ as shown in Fig. 6
Figure 6.  Graph of $ f(p) $ and the straight line $ \beta(p-\bar{p}) $ if $ m = 3 $
Figure 8.  Superimposition of the phase portrait $ C^- $ of (18) and its image under $ \Phi_{\theta_{-}, \theta_{+ }} $ with the phase portraits of (15)
Figure 9.  Nonmonotone cline with $ f(u) = 2u^2(1-u) $
[1]

Linlin Su, Thomas Nagylaki. Clines with directional selection and partial panmixia in an unbounded unidimensional habitat. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1697-1741. doi: 10.3934/dcds.2015.35.1697

[2]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[3]

Yuan Lou, Thomas Nagylaki, Wei-Ming Ni. An introduction to migration-selection PDE models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4349-4373. doi: 10.3934/dcds.2013.33.4349

[4]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[5]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[6]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[7]

Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020110

[8]

Sepideh Mirrahimi. Adaptation and migration of a population between patches. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 753-768. doi: 10.3934/dcdsb.2013.18.753

[9]

Pierre Magal, Glenn F. Webb, Yixiang Wu. Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019223

[10]

Yangjin Kim, Soyeon Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 969-1015. doi: 10.3934/dcdsb.2013.18.969

[11]

Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences & Engineering, 2011, 8 (2) : 371-383. doi: 10.3934/mbe.2011.8.371

[12]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[13]

Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997

[14]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[15]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[16]

Nikolai Dokuchaev. Degenerate backward SPDEs in bounded domains and applications to barrier options. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5317-5334. doi: 10.3934/dcds.2015.35.5317

[17]

Teck Wee Ng, Siti Nur Iqmal Ibrahim. Pricing down-and-out power options with exponentially curved barrier. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 291-297. doi: 10.3934/naco.2018018

[18]

Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations & Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741

[19]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[20]

Hongbin Guo, Michael Yi Li. Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2413-2430. doi: 10.3934/dcdsb.2012.17.2413

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]