• Previous Article
    The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions
  • DCDS Home
  • This Issue
  • Next Article
    Global existence for semilinear damped wave equations in relation with the Strauss conjecture
February  2020, 40(2): 725-752. doi: 10.3934/dcds.2020059

Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

* Corresponding author

Received  July 2018 Revised  August 2019 Published  November 2019

Fund Project: The first author is supported by NCN grant 2017/25/B/ST1/00051

The dynamics is studied of an infinite collection of point particles placed in $ \mathbb{R}^d $, $ d\geq 1 $. The particles perform random jumps with mutual repulsion accompanied by random merging of pairs of particles. The states of the collection are probability measures on the corresponding configuration space. The main result is the proof of the existence of the Markov evolution of states for a bounded time horizon if the initial state is a sub-Poissonian measure. The proof is based on representing sub-Poissonian measures $ \mu $ by their correlation functions $ k_\mu $ and is done in two steps: (a) constructing an evolution $ k_{\mu_0} \to k_t $; (b) proving that $ k_t $ is the correlation function of a unique sub-Poissonian state $ \mu_t $.

Citation: Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059
References:
[1]

R. A. Arratia, Coalescing Brownian Motion on the Line, , ProQuest LLC, Ann Arbor, MI, 1979.  Google Scholar

[2]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05140-6.  Google Scholar

[3]

J. Barańska and Yu. Kozitsky, The global evolution of states of a continuum Kawasaki model with repulsion, IMA J. Appl. Math., 83 (2018), 412-435.  doi: 10.1093/imamat/hxy006.  Google Scholar

[4]

N. BerestyckiCh. Garban and A. Sen, Coalescing Brownian flows: A new approach, Ann. Probab., 43 (2015), 3177-3215.  doi: 10.1214/14-AOP957.  Google Scholar

[5]

D. FinkelshteinYu. KondratievYu. Kozitsky and O. Kutoviy, The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci., 25 (2015), 343-370.  doi: 10.1142/S0218202515500128.  Google Scholar

[6]

N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281-303.   Google Scholar

[7]

V. V. Konarovskii, On an infinite system of diffuising particles with coalescing, Theory Probab. Appl., 55 (2011), 134-144.  doi: 10.1137/S0040585X97984693.  Google Scholar

[8]

V. V. Konarovskii and M. von Renesse, Modified massive Arratia flow and Wasserstein diffusion, Comm. Pure Appl. Math., 72 (2019), 764-800.  doi: 10.1002/cpa.21758.  Google Scholar

[9]

Yu. Kondratiev and Yu. Kozitsky, The evolution of states in a spatial pupulation model, J. Dynam. Differential Equations, 30 (2018), 135-173.  doi: 10.1007/s10884-016-9526-6.  Google Scholar

[10]

Yu. Kondratiev and T. Kuna, Harmonic analysis on configuration spaces. I. General theo, Inf. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 201-233.  doi: 10.1142/S0219025702000833.  Google Scholar

[11]

Yu. KondratievE. Lytvynov and M. Röckner, Non-equilibrium stochastic dynamics in continuum: The free case, Condens. Matt. Phys., 11 (2008), 701-721.  doi: 10.5488/CMP.11.4.701.  Google Scholar

[12]

Y. Le Jan and O. Raimond, Flows, coalescernce and noise, Ann. Probab., 32 (2004), 1247-1315.  doi: 10.1214/009117904000000207.  Google Scholar

[13]

S. Méléard and S. Roelly, Interacting branching measure processes, Stochastic Partial Differential Equations and Applications (Trento, 1990), 246–256, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992.  Google Scholar

[14]

I. Omelyan and Yu. Kozitsky, Spatially inhomogeneous population dynamics: Beyond the mean field approximation, J. Phys. A.: Math. Theor., 52 (2019), 305601 (18pp).  Google Scholar

[15]

K. Pilorz, A kinetic equation for repulsive coalescing random jumps in continuum, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 70 (2016), 47–74. doi: 10.17951/a.2016.70.1.47.  Google Scholar

[16]

E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Contiuum Mechanics, Springer, Berlin, 2009.  Google Scholar

[17]

H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by perturbation and approximation, in: Positivity IV– Theory and Applications, Tech. Univ. Dresden, Dresden, (2006), 135–146.  Google Scholar

show all references

References:
[1]

R. A. Arratia, Coalescing Brownian Motion on the Line, , ProQuest LLC, Ann Arbor, MI, 1979.  Google Scholar

[2]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05140-6.  Google Scholar

[3]

J. Barańska and Yu. Kozitsky, The global evolution of states of a continuum Kawasaki model with repulsion, IMA J. Appl. Math., 83 (2018), 412-435.  doi: 10.1093/imamat/hxy006.  Google Scholar

[4]

N. BerestyckiCh. Garban and A. Sen, Coalescing Brownian flows: A new approach, Ann. Probab., 43 (2015), 3177-3215.  doi: 10.1214/14-AOP957.  Google Scholar

[5]

D. FinkelshteinYu. KondratievYu. Kozitsky and O. Kutoviy, The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci., 25 (2015), 343-370.  doi: 10.1142/S0218202515500128.  Google Scholar

[6]

N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281-303.   Google Scholar

[7]

V. V. Konarovskii, On an infinite system of diffuising particles with coalescing, Theory Probab. Appl., 55 (2011), 134-144.  doi: 10.1137/S0040585X97984693.  Google Scholar

[8]

V. V. Konarovskii and M. von Renesse, Modified massive Arratia flow and Wasserstein diffusion, Comm. Pure Appl. Math., 72 (2019), 764-800.  doi: 10.1002/cpa.21758.  Google Scholar

[9]

Yu. Kondratiev and Yu. Kozitsky, The evolution of states in a spatial pupulation model, J. Dynam. Differential Equations, 30 (2018), 135-173.  doi: 10.1007/s10884-016-9526-6.  Google Scholar

[10]

Yu. Kondratiev and T. Kuna, Harmonic analysis on configuration spaces. I. General theo, Inf. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 201-233.  doi: 10.1142/S0219025702000833.  Google Scholar

[11]

Yu. KondratievE. Lytvynov and M. Röckner, Non-equilibrium stochastic dynamics in continuum: The free case, Condens. Matt. Phys., 11 (2008), 701-721.  doi: 10.5488/CMP.11.4.701.  Google Scholar

[12]

Y. Le Jan and O. Raimond, Flows, coalescernce and noise, Ann. Probab., 32 (2004), 1247-1315.  doi: 10.1214/009117904000000207.  Google Scholar

[13]

S. Méléard and S. Roelly, Interacting branching measure processes, Stochastic Partial Differential Equations and Applications (Trento, 1990), 246–256, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992.  Google Scholar

[14]

I. Omelyan and Yu. Kozitsky, Spatially inhomogeneous population dynamics: Beyond the mean field approximation, J. Phys. A.: Math. Theor., 52 (2019), 305601 (18pp).  Google Scholar

[15]

K. Pilorz, A kinetic equation for repulsive coalescing random jumps in continuum, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 70 (2016), 47–74. doi: 10.17951/a.2016.70.1.47.  Google Scholar

[16]

E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Contiuum Mechanics, Springer, Berlin, 2009.  Google Scholar

[17]

H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by perturbation and approximation, in: Positivity IV– Theory and Applications, Tech. Univ. Dresden, Dresden, (2006), 135–146.  Google Scholar

[1]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[2]

Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585

[3]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[4]

Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic & Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817

[5]

Christine Burggraf, Wilfried Grecksch, Thomas Glauben. Stochastic control of individual's health investments. Conference Publications, 2015, 2015 (special) : 159-168. doi: 10.3934/proc.2015.0159

[6]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[7]

Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1

[8]

Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307

[9]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[10]

Geofferey Jiyun Kim, Jerim Kim, Bara Kim. A stochastic model of contagion with different individual types. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019049

[11]

Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867

[12]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[13]

Antoine Conze, Nicolas Lantos, Olivier Pironneau. The forward Kolmogorov equation for two dimensional options. Communications on Pure & Applied Analysis, 2009, 8 (1) : 195-208. doi: 10.3934/cpaa.2009.8.195

[14]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic & Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[15]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[16]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[17]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[18]

Paula Federico, Dobromir T. Dimitrov, Gary F. McCracken. Bat population dynamics: multilevel model based on individuals' energetics. Mathematical Biosciences & Engineering, 2008, 5 (4) : 743-756. doi: 10.3934/mbe.2008.5.743

[19]

Jeff Musgrave, James Watmough. Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic. Mathematical Biosciences & Engineering, 2009, 6 (2) : 363-376. doi: 10.3934/mbe.2009.6.363

[20]

K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803

2018 Impact Factor: 1.143

Article outline

[Back to Top]