# American Institute of Mathematical Sciences

February  2020, 40(2): 817-845. doi: 10.3934/dcds.2020063

## A curve of positive solutions for an indefinite sublinear Dirichlet problem

 1 FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina 2 Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile 3 Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan

* Corresponding author: Uriel Kaufmann

Received  February 2019 Revised  July 2019 Published  November 2019

Fund Project: U. Kaufmann was partially supported by Secyt-UNC 33620180100016CB; H. Ramos Quoirin was supported by Fondecyt grants 1161635, 1171532, 1171691, and 1181125; K. Umezu was supported by JSPS KAKENHI Grant Numbers JP15K04945 and JP18K03353.

We investigate the existence of a curve
 $q\mapsto u_{q}$
, with
 $q\in(0, 1)$
, of positive solutions for the problem
 $(P_{a, q}) \qquad \qquad \begin{cases} -\Delta u = a(x)u^{q} & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega, \end{cases}$
where
 $\Omega$
is a bounded and smooth domain of
 $\mathbb{R}^{N}$
and
 $a:\Omega\rightarrow\mathbb{R}$
is a sign-changing function (in which case the strong maximum principle does not hold). In addition, we analyze the asymptotic behavior of
 $u_{q}$
as
 $q\rightarrow0^{+}$
and
 $q\rightarrow1^{-}$
. We also show that in some cases
 $u_{q}$
is the ground state solution of
 $(P_{a, q})$
. As a byproduct, we obtain existence results for a singular and indefinite Dirichlet problem. Our results are mainly based on bifurcation and sub-supersolutions methods.
Citation: Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063
##### References:
 [1] S. Alama and Q. Lu, Compactly supported solutions to stationary degenerate diffusion equations,, J. Differential Equations, 246 (2009), 3214-3240.  doi: 10.1016/j.jde.2009.01.029. [2] C. Bandle, M. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.  doi: 10.1090/S0002-9947-1987-0902780-3. [3] C. Bandle, M. A. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.  doi: 10.1007/BF01159655. [4] H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^{n}$, Manuscripta Math., 74 (1992), 87-106.  doi: 10.1007/BF02567660. [5] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-9982-5. [6] M. Crandall, P. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.  doi: 10.1080/03605307708820029. [7] M. Cuesta and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations, 13 (2000), 721-746. [8] D. De Figueiredo, Positive solutions of semilinear elliptic equations, Lect. Notes Math. Springer, 957 (1982), 34-87. [9] M. Delgado and A. Suárez, On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.  doi: 10.1016/j.aml.2004.09.020. [10] M. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341-352.  doi: 10.1017/S0308210500021144. [11] P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, Second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/ Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0387-8. [12] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. doi: 10.1142/9789812774446. [13] J. Hernández, F. Mancebo and J. Vega, On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 777-813.  doi: 10.1016/S0294-1449(02)00102-6. [14] J. Hernández, F. Mancebo and J. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41-62.  doi: 10.1017/S030821050500065X. [15] T. Godoy and U. Kaufmann, On strictly positive solutions for some semilinear elliptic problems, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 779-795.  doi: 10.1007/s00030-012-0179-9. [16] T. Godoy and U. Kaufmann, On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428 (2015), 1239-1251.  doi: 10.1016/j.jmaa.2015.03.069. [17] T. Godoy and U. Kaufmann, Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.  doi: 10.1515/ans-2014-0207. [18] S. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal., 17 (1986), 1359-1369.  doi: 10.1137/0517096. [19] L. Jeanjean, Some continuation properties via minimax arguments, Electron. J. Differential Equations, 2011 (2011), Paper No. 48, 10 pp. [20] R. Kajikiya, Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc., 141 (2013), 1335-1342.  doi: 10.1090/S0002-9939-2012-11569-2. [21] U. Kaufmann and I. Medri, One-dimensional singular problems involving the $p$-Laplacian and nonlinearities indefinite in sign, Adv. Nonlinear Anal., 5 (2016), 251-259.  doi: 10.1515/anona-2015-0116. [22] U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differential Equations, 263 (2017), 4481-4502.  doi: 10.1016/j.jde.2017.05.021. [23] U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity, NoDEA Nonlinear Differ. Equ. Appl., 25 (2018), Art. 12, 34 pp. doi: 10.1007/s00030-018-0502-1. [24] B. Kawohl, M. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12 (2007), 407-434. [25] A. Lair and A. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.  doi: 10.1006/jmaa.1997.5470. [26] A. Lazer and P. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.  doi: 10.1090/S0002-9939-1991-1037213-9. [27] M. A. Pozio and A. Tesei, Support properties of solution for a class of degenerate parabolic problems, Comm. Partial Differential Equations, 12 (1987), 47-75.  doi: 10.1080/03605308708820484. [28] J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.  doi: 10.1080/03605308308820317. [29] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-point Theorems, Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986.

show all references

##### References:
 [1] S. Alama and Q. Lu, Compactly supported solutions to stationary degenerate diffusion equations,, J. Differential Equations, 246 (2009), 3214-3240.  doi: 10.1016/j.jde.2009.01.029. [2] C. Bandle, M. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.  doi: 10.1090/S0002-9947-1987-0902780-3. [3] C. Bandle, M. A. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.  doi: 10.1007/BF01159655. [4] H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^{n}$, Manuscripta Math., 74 (1992), 87-106.  doi: 10.1007/BF02567660. [5] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-9982-5. [6] M. Crandall, P. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.  doi: 10.1080/03605307708820029. [7] M. Cuesta and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations, 13 (2000), 721-746. [8] D. De Figueiredo, Positive solutions of semilinear elliptic equations, Lect. Notes Math. Springer, 957 (1982), 34-87. [9] M. Delgado and A. Suárez, On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.  doi: 10.1016/j.aml.2004.09.020. [10] M. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341-352.  doi: 10.1017/S0308210500021144. [11] P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, Second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/ Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0387-8. [12] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. doi: 10.1142/9789812774446. [13] J. Hernández, F. Mancebo and J. Vega, On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 777-813.  doi: 10.1016/S0294-1449(02)00102-6. [14] J. Hernández, F. Mancebo and J. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41-62.  doi: 10.1017/S030821050500065X. [15] T. Godoy and U. Kaufmann, On strictly positive solutions for some semilinear elliptic problems, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 779-795.  doi: 10.1007/s00030-012-0179-9. [16] T. Godoy and U. Kaufmann, On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428 (2015), 1239-1251.  doi: 10.1016/j.jmaa.2015.03.069. [17] T. Godoy and U. Kaufmann, Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.  doi: 10.1515/ans-2014-0207. [18] S. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal., 17 (1986), 1359-1369.  doi: 10.1137/0517096. [19] L. Jeanjean, Some continuation properties via minimax arguments, Electron. J. Differential Equations, 2011 (2011), Paper No. 48, 10 pp. [20] R. Kajikiya, Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc., 141 (2013), 1335-1342.  doi: 10.1090/S0002-9939-2012-11569-2. [21] U. Kaufmann and I. Medri, One-dimensional singular problems involving the $p$-Laplacian and nonlinearities indefinite in sign, Adv. Nonlinear Anal., 5 (2016), 251-259.  doi: 10.1515/anona-2015-0116. [22] U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differential Equations, 263 (2017), 4481-4502.  doi: 10.1016/j.jde.2017.05.021. [23] U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity, NoDEA Nonlinear Differ. Equ. Appl., 25 (2018), Art. 12, 34 pp. doi: 10.1007/s00030-018-0502-1. [24] B. Kawohl, M. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12 (2007), 407-434. [25] A. Lair and A. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.  doi: 10.1006/jmaa.1997.5470. [26] A. Lazer and P. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.  doi: 10.1090/S0002-9939-1991-1037213-9. [27] M. A. Pozio and A. Tesei, Support properties of solution for a class of degenerate parabolic problems, Comm. Partial Differential Equations, 12 (1987), 47-75.  doi: 10.1080/03605308708820484. [28] J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.  doi: 10.1080/03605308308820317. [29] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-point Theorems, Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986.
The curve of positive solutions in the case $\lambda_{1}(a) = 1$
The curve of positive solutions emanating from $(0, \mathcal{S}(a))$: (ⅰ) The case $\lambda_{1}(a)>1$. (ⅱ) The case $\lambda_{1}(a)<1$
The situation of $\underline{u}$ and $u_{*}$
The curve of positive solutions in the case $\lambda_{1}(a) = 1$
The indefinite weight $a$ in the case $q = \frac{1}{3}$
The nontrivial nonnegative solutions $u_{1}, u_{2}$ with dead cores and a possible solution $u_{3}$ in $\mathcal{P}^{\circ}$ (which is even, by uniqueness) in the case $q = \frac{1}{3}$
 [1] Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335 [2] Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 [3] Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091 [4] Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 [5] Yuxia Guo, Shaolong Peng. Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1637-1648. doi: 10.3934/cpaa.2022037 [6] Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593 [7] Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411 [8] Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974 [9] Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335 [10] Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 [11] Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111 [12] Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure and Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999 [13] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [14] Guglielmo Feltrin, Elisa Sovrano, Andrea Tellini. On the number of positive solutions to an indefinite parameter-dependent Neumann problem. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 21-71. doi: 10.3934/dcds.2021107 [15] Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 [16] Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 [17] Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 [18] Guofeng Che, Haibo Chen, Tsung-fang Wu. Bound state positive solutions for a class of elliptic system with Hartree nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3697-3722. doi: 10.3934/cpaa.2020163 [19] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [20] Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333

2020 Impact Factor: 1.392