
-
Previous Article
On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $
- DCDS Home
- This Issue
-
Next Article
Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields
A curve of positive solutions for an indefinite sublinear Dirichlet problem
1. | FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina |
2. | Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile |
3. | Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan |
$ q\mapsto u_{q} $ |
$ q\in(0, 1) $ |
$(P_{a, q}) \qquad \qquad \begin{cases} -\Delta u = a(x)u^{q} & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega, \end{cases} $ |
$ \Omega $ |
$ \mathbb{R}^{N} $ |
$ a:\Omega\rightarrow\mathbb{R} $ |
$ u_{q} $ |
$ q\rightarrow0^{+} $ |
$ q\rightarrow1^{-} $ |
$ u_{q} $ |
$ (P_{a, q}) $ |
References:
[1] |
S. Alama and Q. Lu,
Compactly supported solutions to stationary degenerate diffusion equations,, J. Differential Equations, 246 (2009), 3214-3240.
doi: 10.1016/j.jde.2009.01.029. |
[2] |
C. Bandle, M. Pozio and A. Tesei,
The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.
doi: 10.1090/S0002-9947-1987-0902780-3. |
[3] |
C. Bandle, M. A. Pozio and A. Tesei,
Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.
doi: 10.1007/BF01159655. |
[4] |
H. Brezis and S. Kamin,
Sublinear elliptic equations in $\mathbb{R}^{n}$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[5] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[6] |
M. Crandall, P. Rabinowitz and L. Tartar,
On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.
doi: 10.1080/03605307708820029. |
[7] |
M. Cuesta and P. Takáč,
A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations, 13 (2000), 721-746.
|
[8] |
D. De Figueiredo,
Positive solutions of semilinear elliptic equations, Lect. Notes Math. Springer, 957 (1982), 34-87.
|
[9] |
M. Delgado and A. Suárez,
On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.
doi: 10.1016/j.aml.2004.09.020. |
[10] |
M. del Pino,
A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341-352.
doi: 10.1017/S0308210500021144. |
[11] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, Second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/ Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0387-8. |
[12] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
doi: 10.1142/9789812774446. |
[13] |
J. Hernández, F. Mancebo and J. Vega,
On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 777-813.
doi: 10.1016/S0294-1449(02)00102-6. |
[14] |
J. Hernández, F. Mancebo and J. Vega,
Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41-62.
doi: 10.1017/S030821050500065X. |
[15] |
T. Godoy and U. Kaufmann,
On strictly positive solutions for some semilinear elliptic problems, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 779-795.
doi: 10.1007/s00030-012-0179-9. |
[16] |
T. Godoy and U. Kaufmann,
On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428 (2015), 1239-1251.
doi: 10.1016/j.jmaa.2015.03.069. |
[17] |
T. Godoy and U. Kaufmann,
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.
doi: 10.1515/ans-2014-0207. |
[18] |
S. Gomes,
On a singular nonlinear elliptic problem, SIAM J. Math. Anal., 17 (1986), 1359-1369.
doi: 10.1137/0517096. |
[19] |
L. Jeanjean, Some continuation properties via minimax arguments, Electron. J. Differential Equations, 2011 (2011), Paper No. 48, 10 pp. |
[20] |
R. Kajikiya,
Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc., 141 (2013), 1335-1342.
doi: 10.1090/S0002-9939-2012-11569-2. |
[21] |
U. Kaufmann and I. Medri,
One-dimensional singular problems involving the $p$-Laplacian and nonlinearities indefinite in sign, Adv. Nonlinear Anal., 5 (2016), 251-259.
doi: 10.1515/anona-2015-0116. |
[22] |
U. Kaufmann, H. Ramos Quoirin and K. Umezu,
Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differential Equations, 263 (2017), 4481-4502.
doi: 10.1016/j.jde.2017.05.021. |
[23] |
U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity, NoDEA Nonlinear Differ. Equ. Appl., 25 (2018), Art. 12, 34 pp.
doi: 10.1007/s00030-018-0502-1. |
[24] |
B. Kawohl, M. Lucia and S. Prashanth,
Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12 (2007), 407-434.
|
[25] |
A. Lair and A. Shaker,
Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.
doi: 10.1006/jmaa.1997.5470. |
[26] |
A. Lazer and P. McKenna,
On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.
doi: 10.1090/S0002-9939-1991-1037213-9. |
[27] |
M. A. Pozio and A. Tesei,
Support properties of solution for a class of degenerate parabolic problems, Comm. Partial Differential Equations, 12 (1987), 47-75.
doi: 10.1080/03605308708820484. |
[28] |
J. Spruck,
Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.
doi: 10.1080/03605308308820317. |
[29] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-point Theorems, Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986. |
show all references
References:
[1] |
S. Alama and Q. Lu,
Compactly supported solutions to stationary degenerate diffusion equations,, J. Differential Equations, 246 (2009), 3214-3240.
doi: 10.1016/j.jde.2009.01.029. |
[2] |
C. Bandle, M. Pozio and A. Tesei,
The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.
doi: 10.1090/S0002-9947-1987-0902780-3. |
[3] |
C. Bandle, M. A. Pozio and A. Tesei,
Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.
doi: 10.1007/BF01159655. |
[4] |
H. Brezis and S. Kamin,
Sublinear elliptic equations in $\mathbb{R}^{n}$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[5] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[6] |
M. Crandall, P. Rabinowitz and L. Tartar,
On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.
doi: 10.1080/03605307708820029. |
[7] |
M. Cuesta and P. Takáč,
A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations, 13 (2000), 721-746.
|
[8] |
D. De Figueiredo,
Positive solutions of semilinear elliptic equations, Lect. Notes Math. Springer, 957 (1982), 34-87.
|
[9] |
M. Delgado and A. Suárez,
On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.
doi: 10.1016/j.aml.2004.09.020. |
[10] |
M. del Pino,
A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341-352.
doi: 10.1017/S0308210500021144. |
[11] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, Second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/ Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0387-8. |
[12] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
doi: 10.1142/9789812774446. |
[13] |
J. Hernández, F. Mancebo and J. Vega,
On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 777-813.
doi: 10.1016/S0294-1449(02)00102-6. |
[14] |
J. Hernández, F. Mancebo and J. Vega,
Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41-62.
doi: 10.1017/S030821050500065X. |
[15] |
T. Godoy and U. Kaufmann,
On strictly positive solutions for some semilinear elliptic problems, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 779-795.
doi: 10.1007/s00030-012-0179-9. |
[16] |
T. Godoy and U. Kaufmann,
On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428 (2015), 1239-1251.
doi: 10.1016/j.jmaa.2015.03.069. |
[17] |
T. Godoy and U. Kaufmann,
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.
doi: 10.1515/ans-2014-0207. |
[18] |
S. Gomes,
On a singular nonlinear elliptic problem, SIAM J. Math. Anal., 17 (1986), 1359-1369.
doi: 10.1137/0517096. |
[19] |
L. Jeanjean, Some continuation properties via minimax arguments, Electron. J. Differential Equations, 2011 (2011), Paper No. 48, 10 pp. |
[20] |
R. Kajikiya,
Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc., 141 (2013), 1335-1342.
doi: 10.1090/S0002-9939-2012-11569-2. |
[21] |
U. Kaufmann and I. Medri,
One-dimensional singular problems involving the $p$-Laplacian and nonlinearities indefinite in sign, Adv. Nonlinear Anal., 5 (2016), 251-259.
doi: 10.1515/anona-2015-0116. |
[22] |
U. Kaufmann, H. Ramos Quoirin and K. Umezu,
Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differential Equations, 263 (2017), 4481-4502.
doi: 10.1016/j.jde.2017.05.021. |
[23] |
U. Kaufmann, H. Ramos Quoirin and K. Umezu, Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity, NoDEA Nonlinear Differ. Equ. Appl., 25 (2018), Art. 12, 34 pp.
doi: 10.1007/s00030-018-0502-1. |
[24] |
B. Kawohl, M. Lucia and S. Prashanth,
Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12 (2007), 407-434.
|
[25] |
A. Lair and A. Shaker,
Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.
doi: 10.1006/jmaa.1997.5470. |
[26] |
A. Lazer and P. McKenna,
On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.
doi: 10.1090/S0002-9939-1991-1037213-9. |
[27] |
M. A. Pozio and A. Tesei,
Support properties of solution for a class of degenerate parabolic problems, Comm. Partial Differential Equations, 12 (1987), 47-75.
doi: 10.1080/03605308708820484. |
[28] |
J. Spruck,
Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.
doi: 10.1080/03605308308820317. |
[29] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-point Theorems, Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986. |




[1] |
Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335 |
[2] |
Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 |
[3] |
Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091 |
[4] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[5] |
Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593 |
[6] |
Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411 |
[7] |
Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974 |
[8] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[9] |
Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335 |
[10] |
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 |
[11] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[12] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111 |
[13] |
Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999 |
[14] |
Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 |
[15] |
Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 |
[16] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033 |
[17] |
Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333 |
[18] |
Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 |
[19] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[20] |
Humberto Ramos Quoirin, Kenichiro Umezu. A loop type component in the non-negative solutions set of an indefinite elliptic problem. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1255-1269. doi: 10.3934/cpaa.2018060 |
2018 Impact Factor: 1.143
Tools
Article outline
Figures and Tables
[Back to Top]