February  2020, 40(2): 907-932. doi: 10.3934/dcds.2020066

On a class of diffusion-aggregation equations

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90025, USA

* Corresponding author: Yuming Paul Zhang

Received  March 2019 Revised  August 2019 Published  November 2019

We investigate the diffusion-aggregation equations with degenerate diffusion $ \Delta u^m $ and singular interaction kernel $ \mathcal{K}_s = (-\Delta)^{-s} $ with $ s\in(0,\frac{d}{2}) $. The equation is related to biological aggregation models. We analyze the regime where the diffusive force is stronger than the aggregation effect. In such regime, we show the existence and uniform boundedness of solutions in the case either $ s>\frac{1}{2} $ or $ m<2 $. Hölder regularity is obtained when $ d\geq3, s>1/2 $ and uniqueness is proved when $ s\geq 1 $.

Citation: Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. BedrossianN. Rodríguez and A. L Bertozzi, Local and global well-posedness for aggregation equations and patlak–keller–segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.  doi: 10.1088/0951-7715/24/6/001.  Google Scholar

[3]

A. L Bertozzi and D. Slepcev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Communications on Pure and Applied Analysis, 9 (2010), 1617-1637.  doi: 10.3934/cpaa.2010.9.1617.  Google Scholar

[4]

A. BlanchetV. Calvez and J. A Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical patlak–keller–segel model, SIAM Journal on Numerical Analysis, 46 (2008), 691-721.  doi: 10.1137/070683337.  Google Scholar

[5]

A. BlanchetJ. A Carrillo and P. Laurençot, Critical mass for a patlak–keller–segel model with degenerate diffusion in higher dimensions, Calculus of Variations and Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[6]

S. BoiV. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Analysis: Real World Applications, 1 (2000), 163-176.  doi: 10.1016/S0362-546X(99)00399-5.  Google Scholar

[7]

L. CaffarelliF. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, Journal of the European Mathematical Society, 15 (2013), 1701-1746.  doi: 10.4171/JEMS/401.  Google Scholar

[8]

L. Caffarelli and J. L. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Archive for Rational Mechanics and Analysis, 202 (2011), 537-565.  doi: 10.1007/s00205-011-0420-4.  Google Scholar

[9]

V. CalvezJ. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Analysis, 159 (2017), 85-128.  doi: 10.1016/j.na.2017.03.008.  Google Scholar

[10]

J. A. CarrilloK. Craig and Y. Yao, Aggregation-diffusion equations: Dynamics, asymptotics, and singular limits, Active Particles, 2 (2019), 65-108.  doi: 10.1007/978-3-030-20297-2_3.  Google Scholar

[11]

J. A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 127, 28 pp. doi: 10.1007/s00526-018-1402-2.  Google Scholar

[12]

J. A. Carrillo and G. Toscani, Asymptotic l 1-decay of solutions of the porous medium equation to self-similarity, Indiana University Mathematics Journal, 49 (2000), 113-142.  doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[13]

J. A. Carrillo and J. Wang, Uniform in time $ l^{\infty}$-estimates for nonlinear aggregation-diffusion equations, Acta Applicandae Mathematicae, (2018), 1–19. doi: 10.1007/s10440-018-0221-y.  Google Scholar

[14]

L. ChayesI. Kim and Y. Yao, An aggregation equation with degenerate diffusion: Qualitative property of solutions, SIAM Journal on Mathematical Analysis, 45 (2013), 2995-3018.  doi: 10.1137/120874965.  Google Scholar

[15]

J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional keller–segel model in $\mathbb{R}^2$, Comptes Rendus Mathematique, 339 (2014), 611-616.  doi: 10.1016/j.crma.2004.08.011.  Google Scholar

[16]

L. Grafakos, Classical Fourier Analysis, volume 2, Springer, 2008.  Google Scholar

[17]

H. HajaiejL. MolinetT. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional gagliardo-nirenberg inequalities and applications to navier-stokes and generalized boson equations (harmonic analysis and nonlinear partial differential equations), RIMS Kokyuroku Bessatsu, 26 (2011), 159-175.   Google Scholar

[18]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[19]

H. E. Huppert and A. W. Woods, Gravity-driven flows in porous layers, Journal of Fluid Mechanics, 292 (1995), 55-69.  doi: 10.1017/S0022112095001431.  Google Scholar

[20]

I. Kim and Y. P. Zhang, Regularity properties of degenerate diffusion equations with drifts, SIAM Journal on Mathematical Analysis, 50 (2018), 4371-4406.  doi: 10.1137/17M1159749.  Google Scholar

[21]

R. Kowalczyk, Preventing blow-up in a chemotaxis model, Journal of Mathematical Analysis and Applications, 305 (2005), 566-588.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar

[22]

M. Kwaśnicki, Ten equivalent definitions of the fractional laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[23]

Q.-H. Nguyen and J. L. Vázquez, Porous medium equation with nonlocal pressure in a bounded domain, Communications in Partial Differential Equations, 43 (2018), 1502-1539.  doi: 10.1080/03605302.2018.1475492.  Google Scholar

[24]

L. Nirenberg, On elliptic partial differential equations, In Il Principio di Minimo e sue Applicazioni Alle Equazioni Funzionali, Springer, 2011, 1–48. doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[25]

M. Riesz, L'intégrale de riemann-liouville et le problème de cauchy, Acta mathematica, 81 (1949), 1-222.  doi: 10.1007/BF02395016.  Google Scholar

[26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[27]

Y. Sugiyama et al, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential and Integral Equations, 20 (2007), 133-180.   Google Scholar

[28]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic keller–segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[29]

C. M. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68 (2006), 1601-1623.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[30] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007.   Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. BedrossianN. Rodríguez and A. L Bertozzi, Local and global well-posedness for aggregation equations and patlak–keller–segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.  doi: 10.1088/0951-7715/24/6/001.  Google Scholar

[3]

A. L Bertozzi and D. Slepcev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Communications on Pure and Applied Analysis, 9 (2010), 1617-1637.  doi: 10.3934/cpaa.2010.9.1617.  Google Scholar

[4]

A. BlanchetV. Calvez and J. A Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical patlak–keller–segel model, SIAM Journal on Numerical Analysis, 46 (2008), 691-721.  doi: 10.1137/070683337.  Google Scholar

[5]

A. BlanchetJ. A Carrillo and P. Laurençot, Critical mass for a patlak–keller–segel model with degenerate diffusion in higher dimensions, Calculus of Variations and Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[6]

S. BoiV. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Analysis: Real World Applications, 1 (2000), 163-176.  doi: 10.1016/S0362-546X(99)00399-5.  Google Scholar

[7]

L. CaffarelliF. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, Journal of the European Mathematical Society, 15 (2013), 1701-1746.  doi: 10.4171/JEMS/401.  Google Scholar

[8]

L. Caffarelli and J. L. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Archive for Rational Mechanics and Analysis, 202 (2011), 537-565.  doi: 10.1007/s00205-011-0420-4.  Google Scholar

[9]

V. CalvezJ. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Analysis, 159 (2017), 85-128.  doi: 10.1016/j.na.2017.03.008.  Google Scholar

[10]

J. A. CarrilloK. Craig and Y. Yao, Aggregation-diffusion equations: Dynamics, asymptotics, and singular limits, Active Particles, 2 (2019), 65-108.  doi: 10.1007/978-3-030-20297-2_3.  Google Scholar

[11]

J. A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 127, 28 pp. doi: 10.1007/s00526-018-1402-2.  Google Scholar

[12]

J. A. Carrillo and G. Toscani, Asymptotic l 1-decay of solutions of the porous medium equation to self-similarity, Indiana University Mathematics Journal, 49 (2000), 113-142.  doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[13]

J. A. Carrillo and J. Wang, Uniform in time $ l^{\infty}$-estimates for nonlinear aggregation-diffusion equations, Acta Applicandae Mathematicae, (2018), 1–19. doi: 10.1007/s10440-018-0221-y.  Google Scholar

[14]

L. ChayesI. Kim and Y. Yao, An aggregation equation with degenerate diffusion: Qualitative property of solutions, SIAM Journal on Mathematical Analysis, 45 (2013), 2995-3018.  doi: 10.1137/120874965.  Google Scholar

[15]

J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional keller–segel model in $\mathbb{R}^2$, Comptes Rendus Mathematique, 339 (2014), 611-616.  doi: 10.1016/j.crma.2004.08.011.  Google Scholar

[16]

L. Grafakos, Classical Fourier Analysis, volume 2, Springer, 2008.  Google Scholar

[17]

H. HajaiejL. MolinetT. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional gagliardo-nirenberg inequalities and applications to navier-stokes and generalized boson equations (harmonic analysis and nonlinear partial differential equations), RIMS Kokyuroku Bessatsu, 26 (2011), 159-175.   Google Scholar

[18]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[19]

H. E. Huppert and A. W. Woods, Gravity-driven flows in porous layers, Journal of Fluid Mechanics, 292 (1995), 55-69.  doi: 10.1017/S0022112095001431.  Google Scholar

[20]

I. Kim and Y. P. Zhang, Regularity properties of degenerate diffusion equations with drifts, SIAM Journal on Mathematical Analysis, 50 (2018), 4371-4406.  doi: 10.1137/17M1159749.  Google Scholar

[21]

R. Kowalczyk, Preventing blow-up in a chemotaxis model, Journal of Mathematical Analysis and Applications, 305 (2005), 566-588.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar

[22]

M. Kwaśnicki, Ten equivalent definitions of the fractional laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[23]

Q.-H. Nguyen and J. L. Vázquez, Porous medium equation with nonlocal pressure in a bounded domain, Communications in Partial Differential Equations, 43 (2018), 1502-1539.  doi: 10.1080/03605302.2018.1475492.  Google Scholar

[24]

L. Nirenberg, On elliptic partial differential equations, In Il Principio di Minimo e sue Applicazioni Alle Equazioni Funzionali, Springer, 2011, 1–48. doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[25]

M. Riesz, L'intégrale de riemann-liouville et le problème de cauchy, Acta mathematica, 81 (1949), 1-222.  doi: 10.1007/BF02395016.  Google Scholar

[26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[27]

Y. Sugiyama et al, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential and Integral Equations, 20 (2007), 133-180.   Google Scholar

[28]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic keller–segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[29]

C. M. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68 (2006), 1601-1623.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[30] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007.   Google Scholar
[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[3]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[7]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[9]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[10]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[11]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[12]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[13]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[17]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[20]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (109)
  • HTML views (86)
  • Cited by (1)

Other articles
by authors

[Back to Top]