The existence of singular limit solutions are investigated by establishing a new Liouville type theorem for nonlinear elliptic system by using the Pohozaev type identity and the nonlinear domain decomposition method.
Citation: |
[1] | N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys.Rev. Lett, 82 (1999), 2661-2664. doi: 10.1103/PhysRevLett.82.2661. |
[2] | S. Baraket, I. Ben Omrane, T. Ouni and N. Trabelsi, Singular limits for 2-dimensional elliptic problem with exponentially dominated nonlinearity and singular data, Commun. Contemp. Math, 13 (2011), 697-725. doi: 10.1142/S0219199711004282. |
[3] | S. Baraket and F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var.Partial Differential Equations, 6 (1998), 1-38. doi: 10.1007/s005260050080. |
[4] | S. Baraket and D. Ye, Singular limit solutions for two-dimentional elliptic problems with exponentionally dominated nonlinearity, Chinese Ann. Math. Ser. B, 22 (2001), 287-296. doi: 10.1142/S0252959901000309. |
[5] | S. Baraket, M. Dammak, T. Ouni and F. Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity, Ann. I. H. Poincaré - AN, 24 (2007), 875-895. doi: 10.1016/j.anihpc.2006.06.009. |
[6] | D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory, Comm. Math. Phys, 229 (2002), 3-47. doi: 10.1007/s002200200664. |
[7] | W. H. Bonnett, Magntically self-focussing streams, Phys. Rev, 45 (1934), 890-897. |
[8] | S. Chanillo and M. K. H. Kiessling, Conformaly invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal, 5 (1995), 924-947. doi: 10.1007/BF01902215. |
[9] | W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J, 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8. |
[10] | Z. Chen and W. Zou, On coupled systems of Schrödinger equations, Adv.Differ. Equ, 16 (2011), 775-800. |
[11] | Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differ. Equ, 48 (2013), 695-711. doi: 10.1007/s00526-012-0568-2. |
[12] | Z. Chen and W. Zou, On linearly coupled Schrödinger systems, Proc.Am. Math. Soc, 142 (2014), 323-333. doi: 10.1090/S0002-9939-2013-12000-9. |
[13] | M. Del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24 (2005), 47-81. doi: 10.1007/s00526-004-0314-5. |
[14] | P. Esposito, Blow up solutions for a Liouville equation with singular data, SIAM J. Math. Anal, 36 (2005), 1310-1345. doi: 10.1137/S0036141003430548. |
[15] | B. D. Esry, C. H. Greene, J. P. Burke and J. L. Bohn Jr., Hartree-Fock theory for double condensates, Phys. Rev. Lett, 78 (1997), 3594-3597. doi: 10.1103/PhysRevLett.78.3594. |
[16] | M. K. H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's Pinch and generalizations, Phys. Plasmas, 1 (1994), 1841-1849. doi: 10.1063/1.870639. |
[17] | C.-S. Lin and G. Tarantello, When blow-up does not imply concentration: A detour from Brézis-Merle's result, Comptes Rendus Mathematique, 354 (2016), 493-498. doi: 10.1016/j.crma.2016.01.014. |
[18] | J. Liouville, Sur l'équation aux différences partielles $\partial^{2}\log\frac{\lambda}{\partial u \partial v}\pm\frac{\lambda}{2a^{2}} = 0 $, J. Math, 18 (1853), 17-72. |
[19] | J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in RN, J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016. |
[20] | C.-S. Lin, J. C. Wei and D. Ye, Classifcation and nondegeneracy of SU(n+1) Toda system, Invent. Math, 190 (2012), 169-207. doi: 10.1007/s00222-012-0378-3. |
[21] | C.-S. Lin, J. Wei and C. Zhao, Classification of blow-up limits for SU(3) singular Toda systems, Analysis and PDE, 8 (2015), 807-837. doi: 10.2140/apde.2015.8.807. |
[22] | M. Musso, A. Pistoia and J. Wei, New blow-up phenomena for SU(n+1) Toda system, J. Differential Equations, 260 (2016), 6232-6266. doi: 10.1016/j.jde.2015.12.036. |
[23] | N. Nagasaki and T. Suzuki, Asymptotic analysis for a two dimensional elliptic eigenvalue problem with dominated nonlinearity, Asymptotic Analysis, 3 (1990), 173-188. |
[24] | T. Suzuki, Two dimensional Emden-Fowler equation with exponential nonlinearity, Nonlinear Diffusion Equations and Their Equilibrium Statesd, 3, (Gregynog, 1989), Birkäuser Boston, Boston, MA, 7 (1992), 493–512. |