The current series of research papers is to investigate the asymptotic dynamics in logistic type chemotaxis models in one space dimension with a free boundary or an unbounded boundary. Such a model with a free boundary describes the spreading of a new or invasive species subject to the influence of some chemical substances in an environment with a free boundary representing the spreading front. In this first part of the series, we investigate the dynamical behaviors of logistic type chemotaxis models on the half line $ \mathbb{R}^+ $, which are formally corresponding limit systems of the free boundary problems. In the second of the series, we will establish the spreading-vanishing dichotomy in chemoattraction-repulsion systems with a free boundary as well as with double free boundaries.
Citation: |
[1] | N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. |
[2] | G. Bunting, Y.-H. Du and K. Kratowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583. |
[3] | J. I. Diaz and T. Nagai, Symmetrization in a parabolic-elliptic system related to chemotaxis, Advances in Mathematical Science and Applications, 5 (1995), 659-680. |
[4] | J. I. Diaz, T. Nagai and J.-M. Rakotoson, Symmetrization techniques on unbounded domains: Application to a chemotaxis system on $\mathbb{R}^N$, J. Differential Equations, 145 (1998), 156-183. doi: 10.1006/jdeq.1997.3389. |
[5] | E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Applied Mathematics Letters, 35 (2014), 29-34. doi: 10.1016/j.aml.2014.04.007. |
[6] | E. Galakhov, O. Salieva and J. I. Tello, On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647. doi: 10.1016/j.jde.2016.07.008. |
[7] | T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. |
[8] | D. Horstmann, From 1970 until present: The keller-segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein, 105 (2003), 103-165. |
[9] | D. Horstmann, Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, Journal of Nonlinear Science, 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x. |
[10] | D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. |
[11] | H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, Journal of Mathematical Analysis and Applications, 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049. |
[12] | K. Kanga and A. Steven, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72. doi: 10.1016/j.na.2016.01.017. |
[13] | E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[14] | E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6. |
[15] | K. Lin, C. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, Journal of Differential Equations, 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002. |
[16] | J. Liu and Z. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, Journal of Biological Dynamics, 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722. |
[17] | M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003), 693-730. doi: 10.1016/S0092-8240(03)00030-2. |
[18] | T. Nagai, T. Senba and K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40 (1997), 411-433. |
[19] | R. B. Salako and W. Shen, Spreading Speeds and Traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 37 (2017), 6189-6225. doi: 10.3934/dcds.2017268. |
[20] | R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^N$. I. Persistence and asymptotic spreading, Mathematical Models and Methods in Applied Sciences, 28 (2018), 2237-2273. doi: 10.1142/S0218202518400146. |
[21] | R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^N$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910. doi: 10.1016/j.jmaa.2018.04.034. |
[22] | R. B. Salako and W. Shen, Global classical solutions, stability of constant equilibria, and spreading speeds in attraction-repulsion chemotaxis systems with logistic source on $\mathbb{R}^N$, Journal of Dynamics and Differential Equations, 31 (2019), 1301-1325. doi: 10.1007/s10884-017-9602-6. |
[23] | R. B. Salako and W. Shen, Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, J. Differential Equations, 262 (2017), 5635-5690. doi: 10.1016/j.jde.2017.02.011. |
[24] | Y. Sugiyama, Global existence in sub-critical cases and finite time blow up in super critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. |
[25] | Y. Sugiyama and H. Kunii, Global Existence and decay properties for a degenerate keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364. doi: 10.1016/j.jde.2006.03.003. |
[26] | L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. |
[27] | Y. Wang, Global bounded weak solutions to a degenerate quasilinear attraction-repulsion chemotaxis system with rotation, Computers and Mathematics with Applications, 72 (2016), 2226-2240. doi: 10.1016/j.camwa.2016.08.024. |
[28] | Y. Wang and Z.-Y. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system, Discrete and Continuous Dynamical Systems-Series B, 21 (2016), 1953-1973. doi: 10.3934/dcdsb.2016031. |
[29] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. |
[30] | M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis and Applications, 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. |
[31] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. |
[32] | M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077. doi: 10.1016/j.jde.2014.04.023. |
[33] | M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855. doi: 10.1007/s00332-014-9205-x. |
[34] | T. Yokota and N. Yoshino, Existence of solutions to chemotaxis dynamics with logistic source, Discrete Contin. Dyn. Syst. Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015, 1125–1133. doi: 10.3934/proc.2015.1125. |
[35] | Q. Zhang and Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z.Angew. Math. Mech, 96 (2016), 570-584. doi: 10.1002/zamm.201400311. |
[36] | P. Zheng, C. Mu, X. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522. doi: 10.1016/j.jmaa.2014.11.031. |
[37] | P. Zheng, C. Mu, X. Hu and Y. Tian, Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Computers and Mathematics with Applications, 72 (2016), 2194-2202. doi: 10.1016/j.camwa.2016.08.028. |