\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain

  • * Corresponding author: Lianzhang Bao

    * Corresponding author: Lianzhang Bao 

The first author is supported by China Postdoctoral Science Foundation (183816). The second author is supported by NSF grant DMS–1645673

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The current series of research papers is to investigate the asymptotic dynamics in logistic type chemotaxis models in one space dimension with a free boundary or an unbounded boundary. Such a model with a free boundary describes the spreading of a new or invasive species subject to the influence of some chemical substances in an environment with a free boundary representing the spreading front. In this first part of the series, we investigate the dynamical behaviors of logistic type chemotaxis models on the half line $ \mathbb{R}^+ $, which are formally corresponding limit systems of the free boundary problems. In the second of the series, we will establish the spreading-vanishing dichotomy in chemoattraction-repulsion systems with a free boundary as well as with double free boundaries.

    Mathematics Subject Classification: Primary: 35R35, 35J65, 35K20; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. 
    [2] G. BuntingY.-H. Du and K. Kratowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.
    [3] J. I. Diaz and T. Nagai, Symmetrization in a parabolic-elliptic system related to chemotaxis, Advances in Mathematical Science and Applications, 5 (1995), 659-680. 
    [4] J. I. DiazT. Nagai and J.-M. Rakotoson, Symmetrization techniques on unbounded domains: Application to a chemotaxis system on $\mathbb{R}^N$, J. Differential Equations, 145 (1998), 156-183.  doi: 10.1006/jdeq.1997.3389.
    [5] E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Applied Mathematics Letters, 35 (2014), 29-34.  doi: 10.1016/j.aml.2014.04.007.
    [6] E. GalakhovO. Salieva and J. I. Tello, On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.  doi: 10.1016/j.jde.2016.07.008.
    [7] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [8] D. Horstmann, From 1970 until present: The keller-segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein, 105 (2003), 103-165. 
    [9] D. Horstmann, Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, Journal of Nonlinear Science, 21 (2011), 231-270.  doi: 10.1007/s00332-010-9082-x.
    [10] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [11] H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, Journal of Mathematical Analysis and Applications, 422 (2015), 1463-1478.  doi: 10.1016/j.jmaa.2014.09.049.
    [12] K. Kanga and A. Steven, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.
    [13] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [14] E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.
    [15] K. LinC. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, Journal of Differential Equations, 261 (2016), 4524-4572.  doi: 10.1016/j.jde.2016.07.002.
    [16] J. Liu and Z. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, Journal of Biological Dynamics, 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722.
    [17] M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003), 693-730.  doi: 10.1016/S0092-8240(03)00030-2.
    [18] T. NagaiT. Senba and K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40 (1997), 411-433. 
    [19] R. B. Salako and W. Shen, Spreading Speeds and Traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.
    [20] R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^N$. I. Persistence and asymptotic spreading, Mathematical Models and Methods in Applied Sciences, 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.
    [21] R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^N$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910.  doi: 10.1016/j.jmaa.2018.04.034.
    [22] R. B. Salako and W. Shen, Global classical solutions, stability of constant equilibria, and spreading speeds in attraction-repulsion chemotaxis systems with logistic source on $\mathbb{R}^N$, Journal of Dynamics and Differential Equations, 31 (2019), 1301-1325.  doi: 10.1007/s10884-017-9602-6.
    [23] R. B. Salako and W. Shen, Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, J. Differential Equations, 262 (2017), 5635-5690.  doi: 10.1016/j.jde.2017.02.011.
    [24] Y. Sugiyama, Global existence in sub-critical cases and finite time blow up in super critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. 
    [25] Y. Sugiyama and H. Kunii, Global Existence and decay properties for a degenerate keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.
    [26] L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.
    [27] Y. Wang, Global bounded weak solutions to a degenerate quasilinear attraction-repulsion chemotaxis system with rotation, Computers and Mathematics with Applications, 72 (2016), 2226-2240.  doi: 10.1016/j.camwa.2016.08.024.
    [28] Y. Wang and Z.-Y. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system, Discrete and Continuous Dynamical Systems-Series B, 21 (2016), 1953-1973.  doi: 10.3934/dcdsb.2016031.
    [29] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [30] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis and Applications, 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.
    [31] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [32] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [33] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
    [34] T. Yokota and N. Yoshino, Existence of solutions to chemotaxis dynamics with logistic source, Discrete Contin. Dyn. Syst. Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015, 1125–1133. doi: 10.3934/proc.2015.1125.
    [35] Q. Zhang and Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z.Angew. Math. Mech, 96 (2016), 570-584.  doi: 10.1002/zamm.201400311.
    [36] P. ZhengC. MuX. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.
    [37] P. ZhengC. MuX. Hu and Y. Tian, Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Computers and Mathematics with Applications, 72 (2016), 2194-2202.  doi: 10.1016/j.camwa.2016.08.028.
  • 加载中
SHARE

Article Metrics

HTML views(1866) PDF downloads(271) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return