• Previous Article
    Lazer-McKenna conjecture for higher order elliptic problem with critical growth
  • DCDS Home
  • This Issue
  • Next Article
    Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain
February  2020, 40(2): 1131-1157. doi: 10.3934/dcds.2020073

On the solvability of singular boundary value problems on the real line in the critical growth case

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy

Received  May 2019 Revised  August 2019 Published  November 2019

Combining fixed point techniques with the method of lower-upper solutions we prove the existence of at least one weak solution for the following boundary value problem
$ \begin{equation*} \left\{ \begin{array}{ll} \left( \, \Phi(a(t, x(t)) \, x'(t) )\, \right)' = f(t, x(t), x'(t)) &\mbox{ in } \mathbb{R}\\ x(-\infty) = \nu_{1}, \quad x(+\infty) = \nu_{2} \end{array} \right. \end{equation*} $
where
$ \nu_{1}, \nu_{2}\in \mathbb{R} $
,
$ \Phi: \mathbb{R} \rightarrow \mathbb{R} $
is a strictly increasing homeomorphism extending the classical
$ p $
-Laplacian,
$ a $
is a nonnegative continuous function on
$ \mathbb{R} \times \mathbb{R} $
which can vanish on a set having zero Lebesgue measure and
$ f $
is a Carathéodory function on
$ \mathbb{R} \times \mathbb{R}^{2} $
.
Citation: Stefano Biagi, Teresa Isernia. On the solvability of singular boundary value problems on the real line in the critical growth case. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1131-1157. doi: 10.3934/dcds.2020073
References:
[1]

C. Bereanu and J. Mawhin, Boundary-value problems with non-surjective $\Phi$-Laplacian and one-side bounded nonlinearity, Adv. Differential Equations, 11 (2006), 35-60.   Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\Phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[3]

C. Bereanu and J. Mawhin, Periodic solutions of nonlinear perturbations of $\Phi$-Laplacians with possibly bounded $\Phi$, Nonlinear Anal., 68 (2008), 1668-1681.  doi: 10.1016/j.na.2006.12.049.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\Phi$-Laplacian, J. Fixed Point Theory Appl., 4 (2008), 57-75.  doi: 10.1007/s11784-008-0072-7.  Google Scholar

[5]

S. Biagi, On the existence of weak solutions for singular strongly nonlinear boundary value problems on the half-line, Annali di Matematica, (2019), 1-30.  doi: 10.1007/s10231-019-00893-2.  Google Scholar

[6]

S. BiagiA. Calamai and F. Papalini, Heteroclinic solutions for a class of boundary value problems associated with singular equations, Nonlinear Anal., 184 (2019), 44-68.  doi: 10.1016/j.na.2019.01.030.  Google Scholar

[7]

S. Biagi, A. Calamai and F. Papalini, Existence results for boundary value problems associated with singular strongly nonlinear equations, arXiv: 1910.10802 (preprint, 2018) doi: 10.1016/j.na.2019.01.030.  Google Scholar

[8]

B. Bianconi and F. Papalini, Non-autonomous boundary value problems on the real line, Discrete Contin. Dyn. Syst., 15 (2006), 759-776.  doi: 10.3934/dcds.2006.15.759.  Google Scholar

[9]

L. Bobisud, Steady-state turbolent flow with reaction, Rocky Mountain J. Math., 21 (1991), 993-1007.  doi: 10.1216/rmjm/1181072925.  Google Scholar

[10]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[11]

A. Cabada and R. L. Pouso, Existence results for the problem $(\phi(u'))' = f(t, u, u')$ with periodic and Neumann boundary conditions, Nonl. Anal. TMA, 30 (1997), 1733-1742.  doi: 10.1016/S0362-546X(97)00249-6.  Google Scholar

[12]

A. Cabada and R. L. Pouso, Existence results for the problem $(\phi(u'))' = f(t, u, u')$ with nonlinear boundary conditions, Nonl. Anal. TMA, 35 (1999), 221-231.  doi: 10.1016/S0362-546X(98)00009-1.  Google Scholar

[13]

A. CabadaD. O'Regan and R. L. Pouso, Second order problems with functional conditions including Sturm-Liouville and multipoint conditions, Math. Nachr., 281 (2008), 1254-1263.  doi: 10.1002/mana.200510675.  Google Scholar

[14]

A. Calamai, Heteroclinic solutions of boundary value problems on the real line involving singular $\Phi$-Laplacian operators, J. Math. Anal. Appl., 378 (2011), 667-679.  doi: 10.1016/j.jmaa.2011.01.056.  Google Scholar

[15]

A. Calamai, C. Marcelli and F. Papalini, Boundary value problems for singular second order equations, Fixed Point Theory Appl., 2018 (2018), Paper No. 20, 22pp. doi: 10.1186/s13663-018-0645-0.  Google Scholar

[16]

G. CupiniC. Marcelli and F. Papalini, Heteroclinic solutions of boundary–value problems on the real line involving general nonlinear differential operators, Differential Integral Equations, 24 (2011), 619-644.   Google Scholar

[17]

G. Cupini, C. Marcelli and F. Papalini, On the solvability of a boundary value problem on the real line, Bound. Value Probl., 2011 (2011), 17 pp. doi: 10.1186/1687-2770-2011-26.  Google Scholar

[18]

N. El KhattabiM. Frigon and N. Ayyadi, Multiple solutions of boundary value problems with $\phi$-Laplacian operators and under a Wintner-Nagumo growth condition, Bound. Value Probl., 2013 (2013), 1-21.  doi: 10.1186/1687-2770-2013-236.  Google Scholar

[19]

J. Esteban and J. Vazquez, On the equation of turbolent fitration in one-dimensional porus media, Nonlinear Anal., 10 (1986), 1303-1325.  doi: 10.1016/0362-546X(86)90068-4.  Google Scholar

[20]

L. Ferracuti and F. Papalini, Boundary-value problems for strongly non-linear multivalued equations involving different $\Phi$-Laplacians, Adv. Differential Equations, 14 (2009), 541-566.   Google Scholar

[21]

C. Marcelli, Existence of solutions to boundary-value problems governed by general non-autonomous nonlinear differential operators, Electron. J. Differential Equations, 2012 (2012), No. 171, 18 pp.  Google Scholar

[22]

C. Marcelli, The role of boundary data on the solvability of some equations involving non-autonomous nonlinear differential operators, Bound. Value Probl., 2013 (2013), 14 pp. doi: 10.1186/1687-2770-2013-252.  Google Scholar

show all references

References:
[1]

C. Bereanu and J. Mawhin, Boundary-value problems with non-surjective $\Phi$-Laplacian and one-side bounded nonlinearity, Adv. Differential Equations, 11 (2006), 35-60.   Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\Phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[3]

C. Bereanu and J. Mawhin, Periodic solutions of nonlinear perturbations of $\Phi$-Laplacians with possibly bounded $\Phi$, Nonlinear Anal., 68 (2008), 1668-1681.  doi: 10.1016/j.na.2006.12.049.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\Phi$-Laplacian, J. Fixed Point Theory Appl., 4 (2008), 57-75.  doi: 10.1007/s11784-008-0072-7.  Google Scholar

[5]

S. Biagi, On the existence of weak solutions for singular strongly nonlinear boundary value problems on the half-line, Annali di Matematica, (2019), 1-30.  doi: 10.1007/s10231-019-00893-2.  Google Scholar

[6]

S. BiagiA. Calamai and F. Papalini, Heteroclinic solutions for a class of boundary value problems associated with singular equations, Nonlinear Anal., 184 (2019), 44-68.  doi: 10.1016/j.na.2019.01.030.  Google Scholar

[7]

S. Biagi, A. Calamai and F. Papalini, Existence results for boundary value problems associated with singular strongly nonlinear equations, arXiv: 1910.10802 (preprint, 2018) doi: 10.1016/j.na.2019.01.030.  Google Scholar

[8]

B. Bianconi and F. Papalini, Non-autonomous boundary value problems on the real line, Discrete Contin. Dyn. Syst., 15 (2006), 759-776.  doi: 10.3934/dcds.2006.15.759.  Google Scholar

[9]

L. Bobisud, Steady-state turbolent flow with reaction, Rocky Mountain J. Math., 21 (1991), 993-1007.  doi: 10.1216/rmjm/1181072925.  Google Scholar

[10]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[11]

A. Cabada and R. L. Pouso, Existence results for the problem $(\phi(u'))' = f(t, u, u')$ with periodic and Neumann boundary conditions, Nonl. Anal. TMA, 30 (1997), 1733-1742.  doi: 10.1016/S0362-546X(97)00249-6.  Google Scholar

[12]

A. Cabada and R. L. Pouso, Existence results for the problem $(\phi(u'))' = f(t, u, u')$ with nonlinear boundary conditions, Nonl. Anal. TMA, 35 (1999), 221-231.  doi: 10.1016/S0362-546X(98)00009-1.  Google Scholar

[13]

A. CabadaD. O'Regan and R. L. Pouso, Second order problems with functional conditions including Sturm-Liouville and multipoint conditions, Math. Nachr., 281 (2008), 1254-1263.  doi: 10.1002/mana.200510675.  Google Scholar

[14]

A. Calamai, Heteroclinic solutions of boundary value problems on the real line involving singular $\Phi$-Laplacian operators, J. Math. Anal. Appl., 378 (2011), 667-679.  doi: 10.1016/j.jmaa.2011.01.056.  Google Scholar

[15]

A. Calamai, C. Marcelli and F. Papalini, Boundary value problems for singular second order equations, Fixed Point Theory Appl., 2018 (2018), Paper No. 20, 22pp. doi: 10.1186/s13663-018-0645-0.  Google Scholar

[16]

G. CupiniC. Marcelli and F. Papalini, Heteroclinic solutions of boundary–value problems on the real line involving general nonlinear differential operators, Differential Integral Equations, 24 (2011), 619-644.   Google Scholar

[17]

G. Cupini, C. Marcelli and F. Papalini, On the solvability of a boundary value problem on the real line, Bound. Value Probl., 2011 (2011), 17 pp. doi: 10.1186/1687-2770-2011-26.  Google Scholar

[18]

N. El KhattabiM. Frigon and N. Ayyadi, Multiple solutions of boundary value problems with $\phi$-Laplacian operators and under a Wintner-Nagumo growth condition, Bound. Value Probl., 2013 (2013), 1-21.  doi: 10.1186/1687-2770-2013-236.  Google Scholar

[19]

J. Esteban and J. Vazquez, On the equation of turbolent fitration in one-dimensional porus media, Nonlinear Anal., 10 (1986), 1303-1325.  doi: 10.1016/0362-546X(86)90068-4.  Google Scholar

[20]

L. Ferracuti and F. Papalini, Boundary-value problems for strongly non-linear multivalued equations involving different $\Phi$-Laplacians, Adv. Differential Equations, 14 (2009), 541-566.   Google Scholar

[21]

C. Marcelli, Existence of solutions to boundary-value problems governed by general non-autonomous nonlinear differential operators, Electron. J. Differential Equations, 2012 (2012), No. 171, 18 pp.  Google Scholar

[22]

C. Marcelli, The role of boundary data on the solvability of some equations involving non-autonomous nonlinear differential operators, Bound. Value Probl., 2013 (2013), 14 pp. doi: 10.1186/1687-2770-2013-252.  Google Scholar

[1]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[2]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[3]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[4]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[5]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[10]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[13]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[14]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[15]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[16]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[17]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[18]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[19]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[20]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (106)
  • HTML views (106)
  • Cited by (5)

Other articles
by authors

[Back to Top]