• Previous Article
    Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions
  • DCDS Home
  • This Issue
  • Next Article
    On the solvability of singular boundary value problems on the real line in the critical growth case
February  2020, 40(2): 1159-1189. doi: 10.3934/dcds.2020074

Lazer-McKenna conjecture for higher order elliptic problem with critical growth

Department of Mathematical Science, Tsinghua University, Beijing 100084, China

* Corresponding author: Yuxia Guo

Received  June 2019 Revised  June 2019 Published  November 2019

Fund Project: The first author is supported by NSFC(11771235)

This paper is concerned with the following problem involving critical Sobolev exponent and polyharmonic operator:
$ \begin{cases} (-\Delta )^mu = u_{+}^{m^*-1}+ \lambda u-s_1 \varphi_1, \hbox{ in } B_1, \\ u \in \mathcal{D}_0^{m,2}(B_1), \end{cases}\;\;\;\;\;\;\;\;\;\;\;\;\;{(P)} $
where
$ B_1 $
is the unit ball in
$ \mathbb{R}^{N} $
,
$ s_1 $
and
$ \lambda $
are two positive parameters,
$ \varphi_1 > 0 $
is the eigenfunction of
$ \left((-\Delta )^m, \mathcal{D}_0^{m,2}(B_1) \right) $
corresponding to the first eigenvalue
$ \lambda_1 $
with
$ \hbox{ max }_{y \in B_1} \varphi_1(y) = 1 $
,
$ u_+ = \hbox{ max }(u,0) $
and
$ m^* = \frac{2N}{N-2m} $
. By using the Lyapunov-Schmits reduction method, we prove that the number of solutions for
$ (P) $
is unbounded as the parameter
$ s_1 $
tends to infinity, therefore proving the Lazer-McKenna conjecture for the higher order operator equation with critical growth.
Citation: Yuxia Guo, Ting Liu. Lazer-McKenna conjecture for higher order elliptic problem with critical growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1159-1189. doi: 10.3934/dcds.2020074
References:
[1]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Math. Pura Appl., 93 (1973), 231-246.  doi: 10.1007/BF02412022.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Scientific & Technical, 1989.  Google Scholar

[3]

B. BreuerP. McKenna and M. Plum, Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof, J. Differ. Equ., 195 (2003), 243-269.  doi: 10.1016/S0022-0396(03)00186-4.  Google Scholar

[4]

M. Calanchi and B. Ruf, Elliptic equations with one-sided critical growth, Electronic J.D.E, (2002), 1–21.  Google Scholar

[5]

E. Dancer, A counter example to the Lazer-McKenna conjecture, Nonlinear Anal., 13 (1989), 19-21.  doi: 10.1016/0362-546X(89)90030-8.  Google Scholar

[6]

E. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differ. Equ., 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[7]

E. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, part 2, Comm. PDE., 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[8]

D. De Figueiredo, On the superlinear Ambrosetti-Prodi problem, Nonlinear Anal., 8 (1984), 655-665.  doi: 10.1016/0362-546X(84)90010-5.  Google Scholar

[9]

D. De FigueiredoP. Shrikanth and S. Santra, Non-radially symmetric solutions for a superlinear Ambrosetti-Prodi type problem in a ball, Nonlinear Anal., 7 (2005), 849-866.  doi: 10.1142/S0219199705001982.  Google Scholar

[10]

D. De Figueiredo and S. Solimini, A variational approach to superlinear elliptic problems, Comm. PDE., 9 (1984), 699-717.  doi: 10.1080/03605308408820345.  Google Scholar

[11]

D. De Figueiredo and J. Yang, Critical superlinear Ambrosetti-Prodi problems. Topol. Methods, Nonlinear Anal., 14 (1999), 59-80.  doi: 10.12775/TMNA.1999.022.  Google Scholar

[12]

F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[13]

H. Hofer, Variational and topological methods in partial ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.  Google Scholar

[14]

A. Lazer and P. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl., 84 (1981), 282-294.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[15]

A. Lazer and P. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Royal Soc. Edinburgh, 95 (1983), 275-283.  doi: 10.1017/S0308210500012993.  Google Scholar

[16]

A. Lazer and P. McKenna, A symmetric theorem and application to nonlinear partial differential equaitons, J. Differ. Equ., 72 (1988), 95-106.  doi: 10.1016/0022-0396(88)90150-7.  Google Scholar

[17]

G. LiS. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial. Differ. Equ., 28 (2007), 471-508.  doi: 10.1007/s00526-006-0051-z.  Google Scholar

[18]

G. LiS. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, part 2, J. Differ. Equ., 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[19]

O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[20]

B. Ruf and S. Solimini, On a calss of superlinear Sturm-Liouville problems with acbitrarily many solutions, J. Math. Anal., 17 (1986), 761-771.  doi: 10.1137/0517055.  Google Scholar

[21]

B. Ruf and P. N. Srikanth, Multiplicity results for superlinear elliptic problems with partial interference with spectrum, J. Math. Anal. Appl., 118 (1986), 15-23.  doi: 10.1016/0022-247X(86)90286-6.  Google Scholar

[22]

B. Ruf and P. N. Srikanth, Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues, Nonlinear Anal., 10 (1986), 157-163.  doi: 10.1016/0362-546X(86)90043-X.  Google Scholar

[23]

S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 143-156.  doi: 10.1016/S0294-1449(16)30407-3.  Google Scholar

[24]

J. Wei and S. Yan, Lazer-McKenna conjecture: The critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

[25]

S. Yan, Multipeak solutions for a nonlinear Neumann problem in exterior domains, Adv. Diff. Equ., 7 (2002), 919-950.   Google Scholar

show all references

References:
[1]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Math. Pura Appl., 93 (1973), 231-246.  doi: 10.1007/BF02412022.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Scientific & Technical, 1989.  Google Scholar

[3]

B. BreuerP. McKenna and M. Plum, Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof, J. Differ. Equ., 195 (2003), 243-269.  doi: 10.1016/S0022-0396(03)00186-4.  Google Scholar

[4]

M. Calanchi and B. Ruf, Elliptic equations with one-sided critical growth, Electronic J.D.E, (2002), 1–21.  Google Scholar

[5]

E. Dancer, A counter example to the Lazer-McKenna conjecture, Nonlinear Anal., 13 (1989), 19-21.  doi: 10.1016/0362-546X(89)90030-8.  Google Scholar

[6]

E. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differ. Equ., 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[7]

E. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, part 2, Comm. PDE., 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[8]

D. De Figueiredo, On the superlinear Ambrosetti-Prodi problem, Nonlinear Anal., 8 (1984), 655-665.  doi: 10.1016/0362-546X(84)90010-5.  Google Scholar

[9]

D. De FigueiredoP. Shrikanth and S. Santra, Non-radially symmetric solutions for a superlinear Ambrosetti-Prodi type problem in a ball, Nonlinear Anal., 7 (2005), 849-866.  doi: 10.1142/S0219199705001982.  Google Scholar

[10]

D. De Figueiredo and S. Solimini, A variational approach to superlinear elliptic problems, Comm. PDE., 9 (1984), 699-717.  doi: 10.1080/03605308408820345.  Google Scholar

[11]

D. De Figueiredo and J. Yang, Critical superlinear Ambrosetti-Prodi problems. Topol. Methods, Nonlinear Anal., 14 (1999), 59-80.  doi: 10.12775/TMNA.1999.022.  Google Scholar

[12]

F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[13]

H. Hofer, Variational and topological methods in partial ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.  Google Scholar

[14]

A. Lazer and P. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl., 84 (1981), 282-294.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[15]

A. Lazer and P. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Royal Soc. Edinburgh, 95 (1983), 275-283.  doi: 10.1017/S0308210500012993.  Google Scholar

[16]

A. Lazer and P. McKenna, A symmetric theorem and application to nonlinear partial differential equaitons, J. Differ. Equ., 72 (1988), 95-106.  doi: 10.1016/0022-0396(88)90150-7.  Google Scholar

[17]

G. LiS. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial. Differ. Equ., 28 (2007), 471-508.  doi: 10.1007/s00526-006-0051-z.  Google Scholar

[18]

G. LiS. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, part 2, J. Differ. Equ., 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[19]

O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[20]

B. Ruf and S. Solimini, On a calss of superlinear Sturm-Liouville problems with acbitrarily many solutions, J. Math. Anal., 17 (1986), 761-771.  doi: 10.1137/0517055.  Google Scholar

[21]

B. Ruf and P. N. Srikanth, Multiplicity results for superlinear elliptic problems with partial interference with spectrum, J. Math. Anal. Appl., 118 (1986), 15-23.  doi: 10.1016/0022-247X(86)90286-6.  Google Scholar

[22]

B. Ruf and P. N. Srikanth, Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues, Nonlinear Anal., 10 (1986), 157-163.  doi: 10.1016/0362-546X(86)90043-X.  Google Scholar

[23]

S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 143-156.  doi: 10.1016/S0294-1449(16)30407-3.  Google Scholar

[24]

J. Wei and S. Yan, Lazer-McKenna conjecture: The critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

[25]

S. Yan, Multipeak solutions for a nonlinear Neumann problem in exterior domains, Adv. Diff. Equ., 7 (2002), 919-950.   Google Scholar

[1]

Michael L. Frankel, Victor Roytburd. A Finite-dimensional attractor for a nonequilibrium Stefan problem with heat losses. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 35-62. doi: 10.3934/dcds.2005.13.35

[2]

E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731

[3]

Marcos L. M. Carvalho, José Valdo A. Goncalves, Claudiney Goulart, Olímpio H. Miyagaki. Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 83-106. doi: 10.3934/cpaa.2019006

[4]

Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495

[5]

Paolo Maria Mariano. Line defect evolution in finite-dimensional manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 575-596. doi: 10.3934/dcdsb.2012.17.575

[6]

A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375

[7]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[8]

Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249

[9]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[10]

Claudianor Oliveira Alves, Paulo Cesar Carrião, Olímpio Hiroshi Miyagaki. Signed solution for a class of quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (4) : 531-545. doi: 10.3934/cpaa.2002.1.531

[11]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[12]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[13]

Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809

[14]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[15]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[16]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[17]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

[18]

Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1269-1289. doi: 10.3934/cpaa.2009.8.1269

[19]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

[20]

Alexandru Kristály. Asymptotically critical problems on higher-dimensional spheres. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 919-935. doi: 10.3934/dcds.2009.23.919

2018 Impact Factor: 1.143

Article outline

[Back to Top]