We prove some new Liouville-type theorems for stable radial solutions of
$ - {{\rm{div}}}{\left(\frac{\nabla u}{\sqrt{1+\left\vert{\nabla u}\right\vert^2}}\right)} = f(u)\mbox{ in } \mathbb R^N, $
where $ f $ is a smooth nonlinearity and $ N \ge 2 $. Also, the sharpness of our results is discussed by means of some examples.
Citation: |
[1] | X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $\Bbb R^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774. doi: 10.1016/j.crma.2004.03.013. |
[2] | X. Cabré, A. Capella and M. Sanchón, Regularity of radial minimizers of reaction equations involving the $p$-Laplacian, Calc. Var. Partial Differential Equations, 34 (2009), 475-494. doi: 10.1007/s00526-008-0192-3. |
[3] | X. Cabré and M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian, Commun. Pure Appl. Anal., 6 (2007), 43-67. doi: 10.3934/cpaa.2007.6.43. |
[4] | D. Castorina, P. Esposito and B. Sciunzi, Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793. doi: 10.3934/cpaa.2009.8.1779. |
[5] | L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119. doi: 10.1016/j.anihpc.2008.06.001. |
[6] | L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman and Hall/CRC, 2011. doi: 10.1201/b10802. |
[7] | A. Farina, Liouville-type results for solutions of $-\Delta u = \vert u\vert ^{p-1}u$ on unbounded domains of $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 341 (2005), 415-418. doi: 10.1016/j.crma.2005.07.006. |
[8] | A. Farina, Liouville-type theorems for elliptic problems, Handbook of Differential Equations: Stationary Partial Differential Equations, 4 (2007), 61-116. doi: 10.1016/S1874-5733(07)80005-2. |
[9] | A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001. |
[10] | A. Farina, Stable solutions of $-\Delta u = e^u$ on $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66. doi: 10.1016/j.crma.2007.05.021. |
[11] | A. Farina and L. Dupaigne, Stable solutions of $ -\Delta u = f(u)$ in $ \mathbb R^N$, Journal of the European Mathematical Society, 12 (2010), 855-882. doi: 10.4171/JEMS/217. |
[12] | A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791. |
[13] | N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x. |
[14] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, , Monographs in Mathematics, 80. Birkhauser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0. |
[15] | M. A. Navarro and S. Villegas, Semi-stable radial solutions of $p$-Laplace equations in $\Bbb{R}^N$, Nonlinear Anal., 149 (2017), 111-116. doi: 10.1016/j.na.2016.10.004. |
[16] | M. A. Navarro and S. Villegas, Sharp estimates of radial minimizers of $p$–Laplace equations, Proc. Amer. Math. Soc., 145 (2017), 2931-2941. doi: 10.1090/proc/13454. |
[17] | S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $\mathbb{R}^N$, J. Math. Pures Appl. (9), 88 (2007), 241-250. doi: 10.1016/j.matpur.2007.06.004. |