March  2020, 40(3): 1257-1281. doi: 10.3934/dcds.2020077

Hausdorff dimension of a class of three-interval exchange maps

University of Maryland, Department of Mathematics, College Park, MD 20742, USA

Received  March 2018 Revised  August 2019 Published  December 2019

In [5] Bourgain proves that Sarnak's disjointness conjecture holds for a certain class of three-interval exchange maps. In the present paper we slightly improve the Diophantine condition of Bourgain and estimate the constants in the proof. We further show that the new parameter set has positive, but not full Hausdorff dimension. This, in particular, implies that the Lebesgue measure of this set is zero.

Citation: Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077
References:
[1]

H. El AbdalaouiM. Lemanczyk and T. De La Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, Int. Math. Res. Not. IMRN, 2017 (2017), 4350-4368.  doi: 10.1093/imrn/rnw146.  Google Scholar

[2]

H. El AbdalaouiM. Lemanczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.  doi: 10.1016/j.jfa.2013.09.005.  Google Scholar

[3]

H. El AbdalaouiS. Kasjan and M. Lemanczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161-176.  doi: 10.1090/proc/12683.  Google Scholar

[4]

J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83. doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[5]

J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130.  doi: 10.1007/s11854-013-0016-z.  Google Scholar

[6]

F. Cellarosi and Y. G. Sinai, Ergodic properties of square-free numbers, J. Eur. Math. Soc., 15 (2013), 1343-1374.  doi: 10.4171/JEMS/394.  Google Scholar

[7]

J. Chaika and A. Eskin, Möbius disjointness for interval exchange transformations on three intervals, J. Mod. Dyn., 14 (2019), 55-86.  doi: 10.3934/jmd.2019003.  Google Scholar

[8]

H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. Math., 8 (1937), 313-320.  doi: 10.1093/qmath/os-8.1.313.  Google Scholar

[9]

A. FanL. LiaoB. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dynam. Systems, 29 (2009), 73-109.  doi: 10.1017/S0143385708000138.  Google Scholar

[10]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅰ: An arithmetic study, Ann. Inst. Fourier (Grenoble), 51 (2001), 861-901.  doi: 10.5802/aif.1839.  Google Scholar

[11]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅱ: A combinatorial description of the trajectories, J. Anal. Math., 89 (2003), 239-276.  doi: 10.1007/BF02893083.  Google Scholar

[12]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅲ: Ergodic and spectral properties, J. Anal. Math., 93 (2004), 103-138.  doi: 10.1007/BF02789305.  Google Scholar

[13]

S. FerencziC. Holton and L. Zamboni, Joinings of three-interval exchange transformations, Ergodic Theory Dynam. Systems, 25 (2005), 483-502.  doi: 10.1017/S0143385704000811.  Google Scholar

[14]

S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math, 134 (2018), 545-573.  doi: 10.1007/s11854-018-0017-z.  Google Scholar

[15]

S. Ferenczi, A generalization of the self-dual induction to every interval exchange transformation, Ann. Inst. Fourier (Grenoble), 64 (2014), 1947-2002.  doi: 10.5802/aif.2901.  Google Scholar

[16]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[17]

B. Green and T. Tao, The M¨obius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3.  Google Scholar

[18]

M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Mathematics and Its Applications, 547, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9940-5.  Google Scholar

[19]

I. Jarnik, Zur metrischen theorie der diopahantischen approximationen, Proc. Mat. Fyz., 36 (1928), 91-106.   Google Scholar

[20]

D. Karagulyan, On Möbius orthogonality for interval maps of zero entropy and orientation-preserving circle homeomorphisms, Ark. Mat., 53 (2015), 317-327.  doi: 10.1007/s11512-014-0208-5.  Google Scholar

[21]

I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47, (1986), 223–225. doi: 10.1007/BF01949145.  Google Scholar

[22]

A. Katok and A. Stepin, Approximations in ergodic theory, Uspehi Math. Nauk, 22 (1967), 81-106.  doi: 10.1070/RM1967v022n05ABEH001227.  Google Scholar

[23]

M. S. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[24]

A. Y. Khinchin, Three Pearls of Number Theory, Graylock Press, Rochester, NY, 1952, 184–185.  Google Scholar

[25]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89-97.   Google Scholar

[26]

P. Sarnak, Three Lectures on the Möbius Function Randomness and Dynamics., Available from: http://www.math.ias.edu/files/wam/2011/PSMobius.pdf.  Google Scholar

[27]

D. Schleicher, Hausdorff dimension, its properties, and its surprises, Amer. Math. Monthly, 114 (2007), 509-528.  doi: 10.1080/00029890.2007.11920440.  Google Scholar

[28]

I. M. Vinogradov, Some theorems concerning the theory of primes, Math. Sb. N. S., 2 (1937), 179-195.   Google Scholar

[29]

A. Zygmund, Trigonometric Series. Vol. I, II, Cambridge University Press, Cambridge, 1988.  Google Scholar

show all references

References:
[1]

H. El AbdalaouiM. Lemanczyk and T. De La Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, Int. Math. Res. Not. IMRN, 2017 (2017), 4350-4368.  doi: 10.1093/imrn/rnw146.  Google Scholar

[2]

H. El AbdalaouiM. Lemanczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.  doi: 10.1016/j.jfa.2013.09.005.  Google Scholar

[3]

H. El AbdalaouiS. Kasjan and M. Lemanczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161-176.  doi: 10.1090/proc/12683.  Google Scholar

[4]

J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83. doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[5]

J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130.  doi: 10.1007/s11854-013-0016-z.  Google Scholar

[6]

F. Cellarosi and Y. G. Sinai, Ergodic properties of square-free numbers, J. Eur. Math. Soc., 15 (2013), 1343-1374.  doi: 10.4171/JEMS/394.  Google Scholar

[7]

J. Chaika and A. Eskin, Möbius disjointness for interval exchange transformations on three intervals, J. Mod. Dyn., 14 (2019), 55-86.  doi: 10.3934/jmd.2019003.  Google Scholar

[8]

H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. Math., 8 (1937), 313-320.  doi: 10.1093/qmath/os-8.1.313.  Google Scholar

[9]

A. FanL. LiaoB. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dynam. Systems, 29 (2009), 73-109.  doi: 10.1017/S0143385708000138.  Google Scholar

[10]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅰ: An arithmetic study, Ann. Inst. Fourier (Grenoble), 51 (2001), 861-901.  doi: 10.5802/aif.1839.  Google Scholar

[11]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅱ: A combinatorial description of the trajectories, J. Anal. Math., 89 (2003), 239-276.  doi: 10.1007/BF02893083.  Google Scholar

[12]

S. FerencziC. Holton and L. Zamboni, Structure of three-interval exchange transformations. Ⅲ: Ergodic and spectral properties, J. Anal. Math., 93 (2004), 103-138.  doi: 10.1007/BF02789305.  Google Scholar

[13]

S. FerencziC. Holton and L. Zamboni, Joinings of three-interval exchange transformations, Ergodic Theory Dynam. Systems, 25 (2005), 483-502.  doi: 10.1017/S0143385704000811.  Google Scholar

[14]

S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math, 134 (2018), 545-573.  doi: 10.1007/s11854-018-0017-z.  Google Scholar

[15]

S. Ferenczi, A generalization of the self-dual induction to every interval exchange transformation, Ann. Inst. Fourier (Grenoble), 64 (2014), 1947-2002.  doi: 10.5802/aif.2901.  Google Scholar

[16]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[17]

B. Green and T. Tao, The M¨obius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3.  Google Scholar

[18]

M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Mathematics and Its Applications, 547, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9940-5.  Google Scholar

[19]

I. Jarnik, Zur metrischen theorie der diopahantischen approximationen, Proc. Mat. Fyz., 36 (1928), 91-106.   Google Scholar

[20]

D. Karagulyan, On Möbius orthogonality for interval maps of zero entropy and orientation-preserving circle homeomorphisms, Ark. Mat., 53 (2015), 317-327.  doi: 10.1007/s11512-014-0208-5.  Google Scholar

[21]

I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47, (1986), 223–225. doi: 10.1007/BF01949145.  Google Scholar

[22]

A. Katok and A. Stepin, Approximations in ergodic theory, Uspehi Math. Nauk, 22 (1967), 81-106.  doi: 10.1070/RM1967v022n05ABEH001227.  Google Scholar

[23]

M. S. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[24]

A. Y. Khinchin, Three Pearls of Number Theory, Graylock Press, Rochester, NY, 1952, 184–185.  Google Scholar

[25]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89-97.   Google Scholar

[26]

P. Sarnak, Three Lectures on the Möbius Function Randomness and Dynamics., Available from: http://www.math.ias.edu/files/wam/2011/PSMobius.pdf.  Google Scholar

[27]

D. Schleicher, Hausdorff dimension, its properties, and its surprises, Amer. Math. Monthly, 114 (2007), 509-528.  doi: 10.1080/00029890.2007.11920440.  Google Scholar

[28]

I. M. Vinogradov, Some theorems concerning the theory of primes, Math. Sb. N. S., 2 (1937), 179-195.   Google Scholar

[29]

A. Zygmund, Trigonometric Series. Vol. I, II, Cambridge University Press, Cambridge, 1988.  Google Scholar

Figure 1.  Khintchine spectrum
[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[12]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[13]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[14]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (205)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]