
-
Previous Article
Existence of periodically invariant tori on resonant surfaces for twist mappings
- DCDS Home
- This Issue
-
Next Article
Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps
Positive Lyapunov exponent for a class of quasi-periodic cocycles
Department of Mathematics, Southeast University, Nanjing 211189, China |
Young [
References:
[1] |
A. Avila,
Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.
doi: 10.1007/s11511-015-0128-7. |
[2] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Ann. of Math. (2), 133 (1991), 73-169.
doi: 10.2307/2944326. |
[3] |
K. Bjerklöv,
The dynamics of a class of quasi-periodic Schrödinger cocycles, Ann. Henri Poincaré, 16 (2015), 961-1031.
doi: 10.1007/s00023-014-0330-8. |
[4] |
J. Bourgain,
Positivity and continuity of the Lyapounov exponent for shifts on $\mathbb T^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.
doi: 10.1007/BF02787834. |
[5] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2), 152 (2000), 835-879.
doi: 10.2307/2661356. |
[6] |
J. Chan,
Method of variations of potential of quasi-periodic Schrödinger equations, Geom. Funct. Anal., 17 (2008), 1416-1478.
doi: 10.1007/s00039-007-0633-8. |
[7] |
L. H. Eliasson,
Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math., 179 (1997), 153-196.
doi: 10.1007/BF02392742. |
[8] |
J. Fröhlich, T. Spencer and P. Wittwer,
Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.
doi: 10.1007/BF02277997. |
[9] |
M. Herman,
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58 (1983), 453-502.
|
[10] |
K. Ishii,
Localization of eigenstates and transport phenomena in one-dimensional disordered systems, Progr. Theoret. Phys. Suppl., 53 (1973), 77-138.
doi: 10.1143/PTPS.53.77. |
[11] |
S. Klein,
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.
doi: 10.1016/j.jfa.2004.04.009. |
[12] |
J. Liang and P. Kung,
Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Front. Math. China, 12 (2017), 607-639.
doi: 10.1007/s11464-017-0619-2. |
[13] |
L. Pastur,
Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196.
doi: 10.1007/BF01222516. |
[14] |
Ya. G. Sinai,
Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.
doi: 10.1007/BF01011146. |
[15] |
E. Sorets and T. Spencer,
Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.
doi: 10.1007/BF02099100. |
[16] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[17] |
L. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[18] |
Z. Zhang,
Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.
doi: 10.1088/0951-7715/25/6/1771. |
show all references
References:
[1] |
A. Avila,
Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.
doi: 10.1007/s11511-015-0128-7. |
[2] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Ann. of Math. (2), 133 (1991), 73-169.
doi: 10.2307/2944326. |
[3] |
K. Bjerklöv,
The dynamics of a class of quasi-periodic Schrödinger cocycles, Ann. Henri Poincaré, 16 (2015), 961-1031.
doi: 10.1007/s00023-014-0330-8. |
[4] |
J. Bourgain,
Positivity and continuity of the Lyapounov exponent for shifts on $\mathbb T^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.
doi: 10.1007/BF02787834. |
[5] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2), 152 (2000), 835-879.
doi: 10.2307/2661356. |
[6] |
J. Chan,
Method of variations of potential of quasi-periodic Schrödinger equations, Geom. Funct. Anal., 17 (2008), 1416-1478.
doi: 10.1007/s00039-007-0633-8. |
[7] |
L. H. Eliasson,
Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math., 179 (1997), 153-196.
doi: 10.1007/BF02392742. |
[8] |
J. Fröhlich, T. Spencer and P. Wittwer,
Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.
doi: 10.1007/BF02277997. |
[9] |
M. Herman,
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58 (1983), 453-502.
|
[10] |
K. Ishii,
Localization of eigenstates and transport phenomena in one-dimensional disordered systems, Progr. Theoret. Phys. Suppl., 53 (1973), 77-138.
doi: 10.1143/PTPS.53.77. |
[11] |
S. Klein,
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.
doi: 10.1016/j.jfa.2004.04.009. |
[12] |
J. Liang and P. Kung,
Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Front. Math. China, 12 (2017), 607-639.
doi: 10.1007/s11464-017-0619-2. |
[13] |
L. Pastur,
Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196.
doi: 10.1007/BF01222516. |
[14] |
Ya. G. Sinai,
Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.
doi: 10.1007/BF01011146. |
[15] |
E. Sorets and T. Spencer,
Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.
doi: 10.1007/BF02099100. |
[16] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[17] |
L. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[18] |
Z. Zhang,
Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.
doi: 10.1088/0951-7715/25/6/1771. |



[1] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[2] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[3] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[4] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[5] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[7] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[8] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[9] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[10] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[11] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[12] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[13] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[14] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[15] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[16] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[17] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[18] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[19] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[20] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]