• Previous Article
    Existence of periodically invariant tori on resonant surfaces for twist mappings
  • DCDS Home
  • This Issue
  • Next Article
    Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps
March  2020, 40(3): 1361-1387. doi: 10.3934/dcds.2020080

Positive Lyapunov exponent for a class of quasi-periodic cocycles

Department of Mathematics, Southeast University, Nanjing 211189, China

Received  January 2019 Revised  October 2019 Published  December 2019

Young [17] proved the positivity of Lyapunov exponent in a large set of the energies for some quasi-periodic cocycles. Her result is also proved to be applicable for some quasi-periodic Schrödinger cocycles by Zhang [18]. However, her result cannot be applied to the Schrödinger cocycles with the potential $ v = \cos(4\pi x)+w( x) $, where $ w\in C^2(\mathbb R/\mathbb Z,\mathbb R) $ is a small perturbation. In this paper, we will improve her result such that it can be applied to more cocycles.

Citation: Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080
References:
[1]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. of Math. (2), 133 (1991), 73-169.  doi: 10.2307/2944326.  Google Scholar

[3]

K. Bjerklöv, The dynamics of a class of quasi-periodic Schrödinger cocycles, Ann. Henri Poincaré, 16 (2015), 961-1031.  doi: 10.1007/s00023-014-0330-8.  Google Scholar

[4]

J. Bourgain, Positivity and continuity of the Lyapounov exponent for shifts on $\mathbb T^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.  doi: 10.1007/BF02787834.  Google Scholar

[5]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2), 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[6]

J. Chan, Method of variations of potential of quasi-periodic Schrödinger equations, Geom. Funct. Anal., 17 (2008), 1416-1478.  doi: 10.1007/s00039-007-0633-8.  Google Scholar

[7]

L. H. Eliasson, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math., 179 (1997), 153-196.  doi: 10.1007/BF02392742.  Google Scholar

[8]

J. FröhlichT. Spencer and P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.  doi: 10.1007/BF02277997.  Google Scholar

[9]

M. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58 (1983), 453-502.   Google Scholar

[10]

K. Ishii, Localization of eigenstates and transport phenomena in one-dimensional disordered systems, Progr. Theoret. Phys. Suppl., 53 (1973), 77-138.  doi: 10.1143/PTPS.53.77.  Google Scholar

[11]

S. Klein, Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.  doi: 10.1016/j.jfa.2004.04.009.  Google Scholar

[12]

J. Liang and P. Kung, Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Front. Math. China, 12 (2017), 607-639.  doi: 10.1007/s11464-017-0619-2.  Google Scholar

[13]

L. Pastur, Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196.  doi: 10.1007/BF01222516.  Google Scholar

[14]

Ya. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.  doi: 10.1007/BF01011146.  Google Scholar

[15]

E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.  doi: 10.1007/BF02099100.  Google Scholar

[16]

Y. Wang and Z. Zhang, Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.  doi: 10.1016/j.jfa.2015.01.003.  Google Scholar

[17]

L. Young, Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.  doi: 10.1017/S0143385797079170.  Google Scholar

[18]

Z. Zhang, Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.  doi: 10.1088/0951-7715/25/6/1771.  Google Scholar

show all references

References:
[1]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. of Math. (2), 133 (1991), 73-169.  doi: 10.2307/2944326.  Google Scholar

[3]

K. Bjerklöv, The dynamics of a class of quasi-periodic Schrödinger cocycles, Ann. Henri Poincaré, 16 (2015), 961-1031.  doi: 10.1007/s00023-014-0330-8.  Google Scholar

[4]

J. Bourgain, Positivity and continuity of the Lyapounov exponent for shifts on $\mathbb T^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.  doi: 10.1007/BF02787834.  Google Scholar

[5]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2), 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[6]

J. Chan, Method of variations of potential of quasi-periodic Schrödinger equations, Geom. Funct. Anal., 17 (2008), 1416-1478.  doi: 10.1007/s00039-007-0633-8.  Google Scholar

[7]

L. H. Eliasson, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math., 179 (1997), 153-196.  doi: 10.1007/BF02392742.  Google Scholar

[8]

J. FröhlichT. Spencer and P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys., 132 (1990), 5-25.  doi: 10.1007/BF02277997.  Google Scholar

[9]

M. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58 (1983), 453-502.   Google Scholar

[10]

K. Ishii, Localization of eigenstates and transport phenomena in one-dimensional disordered systems, Progr. Theoret. Phys. Suppl., 53 (1973), 77-138.  doi: 10.1143/PTPS.53.77.  Google Scholar

[11]

S. Klein, Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.  doi: 10.1016/j.jfa.2004.04.009.  Google Scholar

[12]

J. Liang and P. Kung, Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies, Front. Math. China, 12 (2017), 607-639.  doi: 10.1007/s11464-017-0619-2.  Google Scholar

[13]

L. Pastur, Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196.  doi: 10.1007/BF01222516.  Google Scholar

[14]

Ya. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.  doi: 10.1007/BF01011146.  Google Scholar

[15]

E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.  doi: 10.1007/BF02099100.  Google Scholar

[16]

Y. Wang and Z. Zhang, Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.  doi: 10.1016/j.jfa.2015.01.003.  Google Scholar

[17]

L. Young, Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.  doi: 10.1017/S0143385797079170.  Google Scholar

[18]

Z. Zhang, Positive Lyapunov exponents for quasiperiodic Szegő cocycles, Nonlinearity, 25 (2012), 1771-1797.  doi: 10.1088/0951-7715/25/6/1771.  Google Scholar

Figure 1.  graph of the function in $ \mathcal F $
Figure 2.  Graphs of the angle functions
Figure 3.  Bifurcation of Type Ⅲ functions with $ f'_1(c_1)f'_2(c_2)<0 $
[1]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020216

[2]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[3]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[4]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[5]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[6]

William A. Veech. The Forni Cocycle. Journal of Modern Dynamics, 2008, 2 (3) : 375-395. doi: 10.3934/jmd.2008.2.375

[7]

Moulay-Tahar Benameur, Alan L. Carey. On the analyticity of the bivariant JLO cocycle. Electronic Research Announcements, 2009, 16: 37-43. doi: 10.3934/era.2009.16.37

[8]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[9]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[10]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[11]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[12]

Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

[13]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[14]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[15]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[16]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[17]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[18]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[19]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[20]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (157)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]