March  2020, 40(3): 1389-1409. doi: 10.3934/dcds.2020081

Existence of periodically invariant tori on resonant surfaces for twist mappings

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

* Corresponding author: Xiong Li

Received  January 2019 Revised  June 2019 Published  December 2019

Fund Project: The second author is supported by NSFC (11971059).

In this paper we will prove the existence of periodically invariant tori of twist mappings on resonant surfaces under the low dimensional intersection property.

Citation: Lianpeng Yang, Xiong Li. Existence of periodically invariant tori on resonant surfaces for twist mappings. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1389-1409. doi: 10.3934/dcds.2020081
References:
[1]

V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, in Collected Works, Vladimir I. Arnold - Collected Works, 1, Springer, Berlin, Heidelberg, 2009, 267–294. doi: 10.1007/978-3-642-01742-1_21.

[2]

Q. Bi and J. Xu, Persistence of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings, Qual. Theory Dyn. Syst., 13 (2014), 269-288.  doi: 10.1007/s12346-014-0117-9.

[3]

H. Broer, G. Huitema and M. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Notes in Mathematics, 1645, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-540-49613-7.

[4]

C. Q. Cheng and S. Wang, The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems, J. Differential Equations, 155 (1999), 311-326.  doi: 10.1006/jdeq.1998.3586.

[5]

C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 275-292.  doi: 10.1007/BF00053456.

[6]

C. Q. Cheng and Y. S. Sun, Existence of periodically invariant curves in 3-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 293-303.  doi: 10.1007/BF00053457.

[7]

F. CongY. Li and M. Huang, Invariant tori for nearly twist mappings with intersection property, Northeast. Math. J., 12 (1996), 280-298. 

[8]

F. CongT. KüpperY. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonlinear Sci., 10 (2000), 49-68.  doi: 10.1007/s003329910003.

[9]

H. R. Dullin and J. D. Meiss, Resonances and twist in volume-preserving mappings, SIAM J. Appl. Dyn. Syst., 11 (2012), 319-349.  doi: 10.1137/110846865.

[10]

L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 57-76.  doi: 10.1007/BF01232935.

[11]

S. M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.

[12]

P. HuangX. Li and B. Liu, Invariant curves of smooth quasi-periodic mappings, Discrete Contin. Dyn. Syst., 38 (2018), 131-154.  doi: 10.3934/dcds.2018006.

[13]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.

[14]

P. Huang, X. Li and B. Liu, Invariant curves of almost periodic twist mappings, preprint, arXiv: math/1606.08938.

[15]

P. HuangX. Li and B. Liu, Almost periodic solutions for an asymmetric oscillation, J. Differential Equations, 263 (2017), 8916-8946.  doi: 10.1016/j.jde.2017.08.063.

[16]

A. N. Kolmogorov, On quasi-periodic motions under small perturbations of the Hamiltonian, Dokl. Akas. Nauk SSSR, 98 (1954), 527-530. 

[17]

Y. Li and Y. Yi, A quasi-periodic Poincaré's theorem, Math. Ann., 326 (2003), 649-690.  doi: 10.1007/s00208-002-0399-0.

[18]

Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 357 (2005), 1565-1600.  doi: 10.1090/S0002-9947-04-03564-0.

[19]

Y. Li and Y. Yi, On Poincaré-Treshchev tori in Hamiltonian systems, in EQUADIFF 2003, World Sci. Publ., Hackensack, NJ, 2005, 136–151. doi: 10.1142/9789812702067_0013.

[20]

A. G. MedvedevA. I. Neishtadt and D. V. Treschev, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.  doi: 10.1088/0951-7715/28/7/2105.

[21]

J. Moser, On invariant curves of area-preserving maps of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20. 

[22]

H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Dover Publications, Inc., New York, 1957.

[23]

M. Rudnev and S. Wiggins, KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable Hamiltonian systems, J. Nonlinear Sci., 7 (1997), 177-209.  doi: 10.1007/BF02677977.

[24]

C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-87284-6.

[25]

D. V. Treschev, A mechanism of destruction of resonance tori of Hamiltonian systems, Math. USSR-Sb., 68 (1991), 181-203.  doi: 10.1070/SM1991v068n01ABEH001371.

[26]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems, 12 (1992), 621-631.  doi: 10.1017/S0143385700006969.

[27]

J. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations, 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.

[28]

W. ZhuB. Liu and Z. Liu, The hyperbolic invariant tori of symplectic mappings, Nonlinear Anal., 68 (2008), 109-126.  doi: 10.1016/j.na.2006.10.035.

show all references

References:
[1]

V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, in Collected Works, Vladimir I. Arnold - Collected Works, 1, Springer, Berlin, Heidelberg, 2009, 267–294. doi: 10.1007/978-3-642-01742-1_21.

[2]

Q. Bi and J. Xu, Persistence of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings, Qual. Theory Dyn. Syst., 13 (2014), 269-288.  doi: 10.1007/s12346-014-0117-9.

[3]

H. Broer, G. Huitema and M. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Notes in Mathematics, 1645, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-540-49613-7.

[4]

C. Q. Cheng and S. Wang, The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems, J. Differential Equations, 155 (1999), 311-326.  doi: 10.1006/jdeq.1998.3586.

[5]

C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 275-292.  doi: 10.1007/BF00053456.

[6]

C. Q. Cheng and Y. S. Sun, Existence of periodically invariant curves in 3-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 293-303.  doi: 10.1007/BF00053457.

[7]

F. CongY. Li and M. Huang, Invariant tori for nearly twist mappings with intersection property, Northeast. Math. J., 12 (1996), 280-298. 

[8]

F. CongT. KüpperY. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonlinear Sci., 10 (2000), 49-68.  doi: 10.1007/s003329910003.

[9]

H. R. Dullin and J. D. Meiss, Resonances and twist in volume-preserving mappings, SIAM J. Appl. Dyn. Syst., 11 (2012), 319-349.  doi: 10.1137/110846865.

[10]

L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 57-76.  doi: 10.1007/BF01232935.

[11]

S. M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.  doi: 10.1016/0022-0396(74)90086-2.

[12]

P. HuangX. Li and B. Liu, Invariant curves of smooth quasi-periodic mappings, Discrete Contin. Dyn. Syst., 38 (2018), 131-154.  doi: 10.3934/dcds.2018006.

[13]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.

[14]

P. Huang, X. Li and B. Liu, Invariant curves of almost periodic twist mappings, preprint, arXiv: math/1606.08938.

[15]

P. HuangX. Li and B. Liu, Almost periodic solutions for an asymmetric oscillation, J. Differential Equations, 263 (2017), 8916-8946.  doi: 10.1016/j.jde.2017.08.063.

[16]

A. N. Kolmogorov, On quasi-periodic motions under small perturbations of the Hamiltonian, Dokl. Akas. Nauk SSSR, 98 (1954), 527-530. 

[17]

Y. Li and Y. Yi, A quasi-periodic Poincaré's theorem, Math. Ann., 326 (2003), 649-690.  doi: 10.1007/s00208-002-0399-0.

[18]

Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 357 (2005), 1565-1600.  doi: 10.1090/S0002-9947-04-03564-0.

[19]

Y. Li and Y. Yi, On Poincaré-Treshchev tori in Hamiltonian systems, in EQUADIFF 2003, World Sci. Publ., Hackensack, NJ, 2005, 136–151. doi: 10.1142/9789812702067_0013.

[20]

A. G. MedvedevA. I. Neishtadt and D. V. Treschev, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.  doi: 10.1088/0951-7715/28/7/2105.

[21]

J. Moser, On invariant curves of area-preserving maps of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20. 

[22]

H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Dover Publications, Inc., New York, 1957.

[23]

M. Rudnev and S. Wiggins, KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable Hamiltonian systems, J. Nonlinear Sci., 7 (1997), 177-209.  doi: 10.1007/BF02677977.

[24]

C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-87284-6.

[25]

D. V. Treschev, A mechanism of destruction of resonance tori of Hamiltonian systems, Math. USSR-Sb., 68 (1991), 181-203.  doi: 10.1070/SM1991v068n01ABEH001371.

[26]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems, 12 (1992), 621-631.  doi: 10.1017/S0143385700006969.

[27]

J. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations, 152 (1999), 1-29.  doi: 10.1006/jdeq.1998.3515.

[28]

W. ZhuB. Liu and Z. Liu, The hyperbolic invariant tori of symplectic mappings, Nonlinear Anal., 68 (2008), 109-126.  doi: 10.1016/j.na.2006.10.035.

[1]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[2]

Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162

[3]

Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689

[4]

Jie Liu, Jianguo Si. Invariant tori of a nonlinear Schrödinger equation with quasi-periodically unbounded perturbations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 25-68. doi: 10.3934/cpaa.2017002

[5]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[6]

Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6681-6707. doi: 10.3934/dcds.2020162

[7]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[8]

Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553

[9]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[10]

Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086

[11]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1237-1249. doi: 10.3934/dcdsb.2010.14.1237

[12]

Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64

[13]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[14]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[15]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[16]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[17]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

[18]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[19]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[20]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (260)
  • HTML views (106)
  • Cited by (0)

Other articles
by authors

[Back to Top]