• Previous Article
    Permanence and universal classification of discrete-time competitive systems via the carrying simplex
  • DCDS Home
  • This Issue
  • Next Article
    Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation
March  2020, 40(3): 1595-1620. doi: 10.3934/dcds.2020087

Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system

CMLS, École Polytechnique, CNRS, 91128 Palaiseau, France

* Corresponding author: Yvan Martel

Received  March 2019 Published  December 2019

We consider a system of coupled cubic Schrödinger equations in one space dimension
$ \begin{equation*} \begin{cases} \text{i}\partial_t u + \partial_x^2 u +(|u|^2 + \omega |v|^2) u = 0\\ \text{i}\partial_t v + \partial_x^2 v+ (|v|^2 + \omega |u|^2) v = 0 \end{cases}\quad (t,x)\in \mathbb{R}\times \mathbb{R}, \end{equation*} $
in the non-integrable case
$ 0 < \omega < 1 $
.
First, we justify the existence of a symmetric 2-solitary wave with logarithmic distance, i.e. a solution of the system satisfying
$ \lim\limits_{t\to +\infty}\left\| \begin{pmatrix} u(t) \\ v(t)\end{pmatrix} - \begin{pmatrix} e^{ \text{i} t}Q (\cdot - \frac{1}{2} \log (\Omega t) - \frac{1}{4} \log \log t) \\[4pt] e^{ \text{i} t}Q (\cdot + \frac{1}{2} \log (\Omega t) + \frac{1}{4} \log \log t)\end{pmatrix}\right\|_{H^1\times H^1} = 0 $
where
$ Q = \sqrt{2} $
sech is the explicit solution of
$ Q'' - Q + Q^3 = 0 $
and
$ \Omega>0 $
is a constant. This result extends to the non-integrable case the existence of symmetric 2-solitons with logarithmic distance known in the integrable case
$ \omega = 0 $
and
$ \omega = 1 $
([15,33]). Such strongly interacting symmetric
$ 2 $
-solitary waves were also previously constructed for the non-integrable scalar nonlinear Schrödinger equation in any space dimension and for any energy-subcritical power nonlinearity ([20,22]).
Second, under the conditions
$ 0<c<1 $
and
$ 0<\omega < \frac 12 c(c+1) $
, we construct solutions of the system satisfying
$ \lim\limits_{t\to +\infty}\left\| \begin{pmatrix}u(t) \\ v(t)\end{pmatrix} - \begin{pmatrix}e^{ \text{i} c^2 t}Q_c (\cdot - \frac{1}{(c+1)c} \log (\Omega_c t) )\\[4pt] e^{ \text{i} t} Q (\cdot + \frac{1}{c+1} \log (\Omega_c t))\end{pmatrix} \right\|_{H^1\times H^1} = 0 $
where
$ Q_c(x) = cQ(cx) $
and
$ \Omega_c>0 $
is a constant. Such logarithmic regime with non-symmetric solitons does not exist in the integrable cases
$ \omega = 0 $
and
$ \omega = 1 $
and is still unknown in the non-integrable scalar case.
Citation: Yvan Martel, Tiễn Vinh Nguyến. Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1595-1620. doi: 10.3934/dcds.2020087
References:
[1] M. J. AblowitzB. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511546709.  Google Scholar
[2]

L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.  doi: 10.1016/S0370-1573(97)00092-6.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

V. Combet and Y. Martel, Construction of multi-bubble solutions for the critical GKDV equation, SIAM J. Math. Anal., 50 (2018), 3715-3790.  doi: 10.1137/17M1140595.  Google Scholar

[5]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[6]

F. DelebecqueS. Le Coz and R. M. Weishäupl, Multi-speed solitary waves of nonlinear Schrödinger systems: Theoretical and numerical analysis, Commun. Math. Sci., 14 (2016), 1599-1624.  doi: 10.4310/CMS.2016.v14.n6.a7.  Google Scholar

[7]

L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, Berlin, 2007.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[9]

K. A. Gorshkov and L. A. Ostrovsky, Interactions of solitons in non-integrable systems: Direct perturbation method and applications, Physica 3D, 1 & 2 (1981), 428-438.   Google Scholar

[10]

M. GrillakisJ. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[11]

I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger system, J. Lond. Math. Soc. (2), 89 (2014), 623-639.  doi: 10.1112/jlms/jdt083.  Google Scholar

[12]

J. Jendrej, Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations, preprint, arXiv: 1802.06294 Google Scholar

[13]

V. I. Karpman and V. V. Solov'ev, A perturbational approach to the two-soliton system, Phys. D, 3 (1981), 487-502.  doi: 10.1016/0167-2789(81)90035-X.  Google Scholar

[14]

J. KriegerY. Martel and P. Raphaël, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., 62 (2009), 1501-1550.  doi: 10.1002/cpa.20292.  Google Scholar

[15]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, J. Experimental Theoretical Physics, 38 (1974), 248-253.   Google Scholar

[16]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[17]

Y. Martel and F. Merle, Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[18]

Y. MartelF. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for the subcritical gKdV equations, Commun. Math. Phys., 231 (2002), 347-373.  doi: 10.1007/s00220-002-0723-2.  Google Scholar

[19]

Y. MartelF. Merle and T.-P. Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.  doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[20]

Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 701–737. doi: 10.24033/asens.2364.  Google Scholar

[21]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[22]

T. V. Nguyễn, Existence of multi-solitary waves with logarithmic relative distances for the NLS equations, C. R. Math. Acad. Sci. Paris, 357 (2019), 13-58.  doi: 10.1016/j.crma.2018.11.012.  Google Scholar

[23]

T. V. Nguyễn, Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, 30 (2017), 4614-4648.  doi: 10.1088/1361-6544/aa8cab.  Google Scholar

[24]

E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, 25 (1987), 330-346.  doi: 10.1016/0167-2789(87)90107-2.  Google Scholar

[25]

P. Raphaël, Stability and blow up for the nonlinear Schrödinger equation, in Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, 2008. Google Scholar

[26]

P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.  doi: 10.1090/S0894-0347-2010-00688-1.  Google Scholar

[27] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1946.   Google Scholar
[28]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[29]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[30]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[31]

J. Yang, Suppression of Manakov-soliton interference in optical fibers, Rev. E., 65 (2002). doi: 10.1103/PhysRevE.65.036606.  Google Scholar

[32]

J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Mathematical Modeling and Computation, 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898719680.  Google Scholar

[33]

T. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.   Google Scholar

show all references

References:
[1] M. J. AblowitzB. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511546709.  Google Scholar
[2]

L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.  doi: 10.1016/S0370-1573(97)00092-6.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

V. Combet and Y. Martel, Construction of multi-bubble solutions for the critical GKDV equation, SIAM J. Math. Anal., 50 (2018), 3715-3790.  doi: 10.1137/17M1140595.  Google Scholar

[5]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[6]

F. DelebecqueS. Le Coz and R. M. Weishäupl, Multi-speed solitary waves of nonlinear Schrödinger systems: Theoretical and numerical analysis, Commun. Math. Sci., 14 (2016), 1599-1624.  doi: 10.4310/CMS.2016.v14.n6.a7.  Google Scholar

[7]

L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, Berlin, 2007.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[9]

K. A. Gorshkov and L. A. Ostrovsky, Interactions of solitons in non-integrable systems: Direct perturbation method and applications, Physica 3D, 1 & 2 (1981), 428-438.   Google Scholar

[10]

M. GrillakisJ. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[11]

I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger system, J. Lond. Math. Soc. (2), 89 (2014), 623-639.  doi: 10.1112/jlms/jdt083.  Google Scholar

[12]

J. Jendrej, Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations, preprint, arXiv: 1802.06294 Google Scholar

[13]

V. I. Karpman and V. V. Solov'ev, A perturbational approach to the two-soliton system, Phys. D, 3 (1981), 487-502.  doi: 10.1016/0167-2789(81)90035-X.  Google Scholar

[14]

J. KriegerY. Martel and P. Raphaël, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., 62 (2009), 1501-1550.  doi: 10.1002/cpa.20292.  Google Scholar

[15]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, J. Experimental Theoretical Physics, 38 (1974), 248-253.   Google Scholar

[16]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[17]

Y. Martel and F. Merle, Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[18]

Y. MartelF. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for the subcritical gKdV equations, Commun. Math. Phys., 231 (2002), 347-373.  doi: 10.1007/s00220-002-0723-2.  Google Scholar

[19]

Y. MartelF. Merle and T.-P. Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.  doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[20]

Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 701–737. doi: 10.24033/asens.2364.  Google Scholar

[21]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[22]

T. V. Nguyễn, Existence of multi-solitary waves with logarithmic relative distances for the NLS equations, C. R. Math. Acad. Sci. Paris, 357 (2019), 13-58.  doi: 10.1016/j.crma.2018.11.012.  Google Scholar

[23]

T. V. Nguyễn, Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, 30 (2017), 4614-4648.  doi: 10.1088/1361-6544/aa8cab.  Google Scholar

[24]

E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, 25 (1987), 330-346.  doi: 10.1016/0167-2789(87)90107-2.  Google Scholar

[25]

P. Raphaël, Stability and blow up for the nonlinear Schrödinger equation, in Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, 2008. Google Scholar

[26]

P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.  doi: 10.1090/S0894-0347-2010-00688-1.  Google Scholar

[27] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1946.   Google Scholar
[28]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[29]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[30]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[31]

J. Yang, Suppression of Manakov-soliton interference in optical fibers, Rev. E., 65 (2002). doi: 10.1103/PhysRevE.65.036606.  Google Scholar

[32]

J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Mathematical Modeling and Computation, 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898719680.  Google Scholar

[33]

T. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.   Google Scholar

[1]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[2]

Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013

[3]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[6]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[7]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[8]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[9]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[10]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[11]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[12]

Baowei Feng. On the decay rates for a one-dimensional porous elasticity system with past history. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2905-2921. doi: 10.3934/cpaa.2019130

[13]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[14]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[15]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[16]

Abbas Moameni. Soliton solutions for quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$. Communications on Pure & Applied Analysis, 2008, 7 (1) : 89-105. doi: 10.3934/cpaa.2008.7.89

[17]

Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167

[18]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[19]

Tomasz Nowicki, Grezegorz Świrszcz. Neutral one-dimensional attractor of a two-dimensional system derived from Newton's means. Conference Publications, 2005, 2005 (Special) : 700-709. doi: 10.3934/proc.2005.2005.700

[20]

Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (48)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]