• Previous Article
    On the fundamental solution and its application in a large class of differential systems determined by Volterra type operators with delay
  • DCDS Home
  • This Issue
  • Next Article
    Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system
March  2020, 40(3): 1621-1663. doi: 10.3934/dcds.2020088

Permanence and universal classification of discrete-time competitive systems via the carrying simplex

1. 

Department of Mathematics and Statistics, University of Helsinki, Helsinki FI-00014, Finland

2. 

Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China

3. 

School of Sciences, Zhejiang A & F University, Hangzhou 311300, China

* Corresponding author: Lei Niu

Received  April 2019 Revised  September 2019 Published  December 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11371252 and Grant No. 11771295, Shanghai Gaofeng Project for University Academic Program Development, and the Academy of Finland.

We study the permanence and impermanence for discrete-time Kolmogorov systems admitting a carrying simplex. Sufficient conditions to guarantee permanence and impermanence are provided based on the existence of a carrying simplex. Particularly, for low-dimensional systems, permanence and impermanence can be determined by boundary fixed points. For a class of competitive systems whose fixed points are determined by linear equations, there always exists a carrying simplex. We provide a universal classification via the equivalence relation relative to local dynamics of boundary fixed points for the three-dimensional systems by the index formula on the carrying simplex. There are a total of $ 33 $ stable equivalence classes which are described in terms of inequalities on parameters, and we present the phase portraits on their carrying simplices. Moreover, every orbit converges to some fixed point in classes $ 1-25 $ and $ 33 $; there is always a heteroclinic cycle in class $ 27 $; Neimark-Sacker bifurcations may occur in classes $ 26-31 $ but cannot occur in class $ 32 $. Based on our permanence criteria and the equivalence classification, we obtain the specific conditions on parameters for permanence and impermanence. Only systems in classes $ 29, 31, 33 $ and those in class $ 27 $ with a repelling heteroclinic cycle are permanent. Applications to discrete population models including the Leslie-Gower models, Atkinson-Allen models and Ricker models are given.

Citation: Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. Permanence and universal classification of discrete-time competitive systems via the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1621-1663. doi: 10.3934/dcds.2020088
References:
[1]

L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology, Fields Institute Communications, 21, Amer. Math. Soc., Providence, RI, 1999, 15–30.  Google Scholar

[2]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[3]

D. N. Atkinson, Mathematical Models for Plant Competition and Dispersal, Master's thesis, Texas Tech University in Lubbock, 1997. Google Scholar

[4]

S. Baigent, Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems, Nonlinearity, 26 (2013), 1001-1029.  doi: 10.1088/0951-7715/26/4/1001.  Google Scholar

[5]

S. Baigent, Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems, J. Difference Equ. Appl., 22 (2016), 609-622.  doi: 10.1080/10236198.2015.1125895.  Google Scholar

[6]

S. Baigent, Convex geometry of the carrying simplex for the May–Leonard map, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1697-1723.  doi: 10.3934/dcdsb.2018288.  Google Scholar

[7]

S. Baigent and Z. Hou, Global stability of interior and boundary fixed points for Lotka-Volterra systems, Differ. Equ. Dyn. Syst., 20 (2012), 53-66.  doi: 10.1007/s12591-012-0103-0.  Google Scholar

[8]

S. Baigent and Z. Hou, Global stability of discrete-time competitive population models, J. Difference Equ. Appl., 23 (2017), 1378-1396.  doi: 10.1080/10236198.2017.1333116.  Google Scholar

[9]

E. C. BalreiraS. Elaydi and R. Luís, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375.  Google Scholar

[10]

Å. Brännström and D. J. T. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B, 272 (2005), 2065-2072.  doi: 10.1098/rspb.2005.3185.  Google Scholar

[11]

X. ChenJ. Jiang and L. Niu, On Lotka-Volterra equations with identical minimal intrinsic growth rate, SIAM J. Appl. Dyn. Syst., 14 (2015), 1558-1599.  doi: 10.1137/15M1006878.  Google Scholar

[12]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Fundamental Principles of Mathematical Science, 251, Springer-Verlag, New York-Berlin, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[13]

J. M. Cushing, On the fundamental bifurcation theorem for semelparous Leslie models, in Dynamics, Games and Science, CIM Ser. Math. Sci., 1, Springer, Cham, 2015, 215–251.  Google Scholar

[14]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.  Google Scholar

[15]

N. V. DavydovaO. Diekmann and S. A. van Gils, On circulant populations. Ⅰ. The algebra of semelparity, Linear Algebra Appl., 398 (2005), 185-243.  doi: 10.1016/j.laa.2004.12.020.  Google Scholar

[16]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol., 11 (1981), 319-335.  doi: 10.1007/BF00276900.  Google Scholar

[17]

O. DiekmannY. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.  doi: 10.3934/dcds.2008.20.37.  Google Scholar

[18]

H. T. M. Eskola and S. A. H. Geritz, On the mechanistic derivation of various discrete-time population models, Bull. Math. Biol., 69 (2007), 329-346.  doi: 10.1007/s11538-006-9126-4.  Google Scholar

[19]

M. A. Fishman, Density effects in population growth: An exploration, Biosystems, 40 (1997), 219-236.  doi: 10.1016/S0303-2647(96)01649-8.  Google Scholar

[20]

J. E. Franke and A.-A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, J. Math. Biol., 30 (1991), 161-168.  doi: 10.1007/BF00160333.  Google Scholar

[21]

J. E. Franke and A.-A. Yakubu, Geometry of exclusion principles in discrete systems, J. Math. Anal. Appl., 168 (1992), 385-400.  doi: 10.1016/0022-247X(92)90167-C.  Google Scholar

[22]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations, SIAM J. Math. Anal., 34 (2003), 1007-1039.  doi: 10.1137/S0036141001392815.  Google Scholar

[23]

S. A. H. Geritz, Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50 (2005), 67-82.  doi: 10.1007/s00285-004-0280-8.  Google Scholar

[24]

S. A. H. GeritzM. GyllenbergF. J. A. Jacobs and K. Parvinen, Invasion dynamics and attractor inheritance, J. Math. Biol., 44 (2002), 548-560.  doi: 10.1007/s002850100136.  Google Scholar

[25]

S. A. H. Geritz and E. Kisdi, On the mechanistic underpinning of discrete-time population models with complex dynamics, J. Theoret. Biol., 228 (2004), 261-269.  doi: 10.1016/j.jtbi.2004.01.003.  Google Scholar

[26]

S. A. H. GeritzE. KisdiG. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.  doi: 10.1023/A:1006554906681.  Google Scholar

[27]

S. A. H. GeritzJ. A. J. MetzE. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027.  doi: 10.1103/PhysRevLett.78.2024.  Google Scholar

[28]

W. GovaertsR. K. GhazianiY. A. Kuznetsov and H. G. E. Meijer, Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29 (2007), 2644-2667.  doi: 10.1137/060653858.  Google Scholar

[29]

W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and N. Neirynck, A study of resonance tongues near a Chenciner bifurcation using MatcontM, European Nonlinear Dynamics Conference, 2011, 24–29. Google Scholar

[30]

A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[31]

M. GyllenbergI. Hanski and T. Lindström, Continuous versus discrete single species population models with adjustable reproductive strategies, Bull. Math. Biol., 59 (1997), 679-705.  doi: 10.1007/BF02458425.  Google Scholar

[32]

M. GyllenbergJ. Jiang and L. Niu, A note on global stability of three-dimensional Ricker models, J. Difference Equ. Appl., 25 (2019), 142-150.  doi: 10.1080/10236198.2019.1566459.  Google Scholar

[33]

M. Gyllenberg, J. Jiang, L. Niu and P. Yan, On the dynamics of multi-species Ricker models admitting a carrying simplex, J. Difference Equ. Appl., in press. doi: 10.1080/10236198.2019.1663182.  Google Scholar

[34]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discrete Contin. Dyn. Syst., 38 (2018), 615-650.  doi: 10.3934/dcds.2018027.  Google Scholar

[35]

M. GyllenbergP. Yan and Y. Wang, A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So, Appl. Math. Lett., 19 (2006), 1-7.  doi: 10.1016/j.aml.2005.01.002.  Google Scholar

[36]

J. K. Hale and A. S. Somolinos, Competition for fluctuating nutrient, J. Math. Biol., 18 (1983), 255-280.  doi: 10.1007/BF00276091.  Google Scholar

[37]

M. P. Hassell, Density-dependence in single-species populations, J. Anim. Ecol., 44 (1975), 283-295.  doi: 10.2307/3863.  Google Scholar

[38]

M. P. Hassell and H. N. Comins, Discrete time models for two-species competition, Theoret. Population Biology, 9 (1976), 202-221.  doi: 10.1016/0040-5809(76)90045-9.  Google Scholar

[39]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. Ⅲ. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[40]

M. W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.  doi: 10.1080/17513750801939236.  Google Scholar

[41]

J. Hofbauer, Heteroclinic cycles in ecological differential equations, Tatra Mt. Math. Publ., 4 (1994), 105-116.   Google Scholar

[42]

J. HofbauerV. Hutson and W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553-570.  doi: 10.1007/BF00276199.  Google Scholar

[43] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[44]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[45]

Z. Hou and S. Baigent, Global stability and repulsion in autonomous Kolmogorov systems, Commun. Pure Appl. Anal., 14 (2015), 1205-1238.  doi: 10.3934/cpaa.2015.14.1205.  Google Scholar

[46]

T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton-Holt Ricker model, SIAM J. Appl. Dyn. Syst., 13 (2014), 1442-1488.  doi: 10.1137/140955434.  Google Scholar

[47]

V. Hutson and W. Moran, Persistence of species obeying difference equations, J. Math. Biol., 15 (1982), 203-213.  doi: 10.1007/BF00275073.  Google Scholar

[48]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.  doi: 10.3934/dcds.2016.36.217.  Google Scholar

[49]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.  doi: 10.1007/s00285-016-1052-y.  Google Scholar

[50]

J. JiangL. Niu and Y. Wang, On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.  doi: 10.1007/s00285-015-0920-1.  Google Scholar

[51]

J. JiangL. Niu and D. Zhu, On the complete classification of nullcline stable competitive three-dimensional Gompertz models, Nonlinear Anal. Real World Appl., 20 (2014), 21-35.  doi: 10.1016/j.nonrwa.2014.04.006.  Google Scholar

[52]

F. G. W. Jones and J. N. Perry, Modelling populations of cyst-nematodes (Nematoda: Heteroderidae), J. Applied Ecology, 15 (1978), 349-371.  doi: 10.2307/2402596.  Google Scholar

[53]

R. Kon, Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points, J. Math. Biol., 48 (2004), 57-81.  doi: 10.1007/s00285-003-0224-8.  Google Scholar

[54]

R. Kon, Convex dominates concave: An exclusion principle in discrete-time Kolmogorov systems, Proc. Amer. Math. Soc., 134 (2006), 3025-3034.  doi: 10.1090/S0002-9939-06-08309-2.  Google Scholar

[55]

R. Kon and Y. Takeuchi, Permanence of host-parasitoid systems, Nonlinear Anal., 47 (2001), 1383-1393.  doi: 10.1016/S0362-546X(01)00273-5.  Google Scholar

[56]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[57]

Y. A. Kuznetsov and R. J. Sacker, Neimark-Sacker bifurcation, Scholarpedia, 3 (2008). doi: 10.4249/scholarpedia.1845.  Google Scholar

[58]

R. Law and A. R. Watkinson, Response-surface analysis of two-species competition: An experiment on Phleum arenarium and Vulpia fasciculata, J. Ecol., 75 (1987), 871-886.  doi: 10.2307/2260211.  Google Scholar

[59]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316-330.  doi: 10.1093/biomet/45.3-4.316.  Google Scholar

[60]

J. M. Levine and M. Rees, Coexistence and relative abundance in annual plant assemblages: The roles of competition and colonization, Amer. Naturalist, 160 (2002), 452-467.  doi: 10.1086/342073.  Google Scholar

[61]

Z. Lu and Y. Luo, Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Comput. Math. Appl., 46 (2003), 231-238.  doi: 10.1016/S0898-1221(03)90027-7.  Google Scholar

[62]

Z. Lu and W. Wang, Permanence and global attractivity for Lotka-Volterra difference systems, J. Math. Biol., 39 (1999), 269-282.  doi: 10.1007/s002850050171.  Google Scholar

[63]

R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.  doi: 10.1126/science.186.4164.645.  Google Scholar

[64]

R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist, 110 (1976), 573-599.  doi: 10.1086/283092.  Google Scholar

[65]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719512.  Google Scholar

[66]

J. Mierczyński, The ${C}^1$ property of convex carrying simplices for competitive maps, Ergodic Theory Dynam. Systems, (2018), 1–16. doi: 10.1017/etds.2018.85.  Google Scholar

[67]

J. Mierczyński, The ${C}^1$ property of convex carrying simplices for three-dimensional competitive maps, J. Difference Equ. Appl., 24 (2018), 1199-1209.  doi: 10.1080/10236198.2018.1428964.  Google Scholar

[68]

J. MierczyńskiL. Niu and A. Ruiz-Herrera, Linearization and invariant manifolds on the carrying simplex for competitive maps, J. Differential Equations, 267 (2019), 7385-7410.  doi: 10.1016/j.jde.2019.08.001.  Google Scholar

[69]

L. Niu and A. Ruiz-Herrera, Trivial dynamics in discrete-time systems: Carrying simplex and translation arcs, Nonlinearity, 31 (2018), 2633-2650.  doi: 10.1088/1361-6544/aab46e.  Google Scholar

[70]

M. Rees and M. Westoby, Game-theoretical evolution of seed mass in multi-species ecological models, Oikos, 78 (1997), 116-126.  doi: 10.2307/3545807.  Google Scholar

[71]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Board. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[72]

L.-I. W. Roeger, Discrete May-Leonard competition models. Ⅱ, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 841-860.  doi: 10.3934/dcdsb.2005.5.841.  Google Scholar

[73]

L.-I. W. Roeger and L. J. S. Allen, Discrete May–Leonard competition models. Ⅰ, J. Difference Equ. Appl., 10 (2004), 77-98.  doi: 10.1080/10236190310001603662.  Google Scholar

[74]

A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Equ. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.  Google Scholar

[75]

H. L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.  doi: 10.1016/0022-0396(86)90086-0.  Google Scholar

[76]

H. L. Smith, Planar competitive and cooperative difference equations, J. Differ. Equations Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

[77]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, RI, 2011.  Google Scholar

[78]

C. R. Townsend, M. Begon and J. L. Harper, Essentials of Ecology, Blackwell Publishing, 2008. Google Scholar

[79]

W. Van den bergW. A. H. Rossing and J. Grasman, Contest and scramble competition and the carry-over effect in Globodera spp. in potato-based crop rotations using an extended Ricker model, J. Nematol., 38 (2006), 210-220.   Google Scholar

[80]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka–Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[81]

G. C. Varley, G. R. Gradwell and M. P. Hassell, Insect Population Ecology, Blackwell Scientific Publications, Oxford, 1973. Google Scholar

[82]

Y. Wang and J. Jiang, Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.  doi: 10.1016/S0022-0396(02)00025-6.  Google Scholar

[83]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Differential Equations, 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[84]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, 1994, 353–364.  Google Scholar

[85]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc., 355 (2003), 713-734.  doi: 10.1090/S0002-9947-02-03103-3.  Google Scholar

[86]

E. C. Zeeman and M. L. Zeeman, An $n$-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[87]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

show all references

References:
[1]

L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology, Fields Institute Communications, 21, Amer. Math. Soc., Providence, RI, 1999, 15–30.  Google Scholar

[2]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[3]

D. N. Atkinson, Mathematical Models for Plant Competition and Dispersal, Master's thesis, Texas Tech University in Lubbock, 1997. Google Scholar

[4]

S. Baigent, Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems, Nonlinearity, 26 (2013), 1001-1029.  doi: 10.1088/0951-7715/26/4/1001.  Google Scholar

[5]

S. Baigent, Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems, J. Difference Equ. Appl., 22 (2016), 609-622.  doi: 10.1080/10236198.2015.1125895.  Google Scholar

[6]

S. Baigent, Convex geometry of the carrying simplex for the May–Leonard map, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1697-1723.  doi: 10.3934/dcdsb.2018288.  Google Scholar

[7]

S. Baigent and Z. Hou, Global stability of interior and boundary fixed points for Lotka-Volterra systems, Differ. Equ. Dyn. Syst., 20 (2012), 53-66.  doi: 10.1007/s12591-012-0103-0.  Google Scholar

[8]

S. Baigent and Z. Hou, Global stability of discrete-time competitive population models, J. Difference Equ. Appl., 23 (2017), 1378-1396.  doi: 10.1080/10236198.2017.1333116.  Google Scholar

[9]

E. C. BalreiraS. Elaydi and R. Luís, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375.  Google Scholar

[10]

Å. Brännström and D. J. T. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B, 272 (2005), 2065-2072.  doi: 10.1098/rspb.2005.3185.  Google Scholar

[11]

X. ChenJ. Jiang and L. Niu, On Lotka-Volterra equations with identical minimal intrinsic growth rate, SIAM J. Appl. Dyn. Syst., 14 (2015), 1558-1599.  doi: 10.1137/15M1006878.  Google Scholar

[12]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Fundamental Principles of Mathematical Science, 251, Springer-Verlag, New York-Berlin, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[13]

J. M. Cushing, On the fundamental bifurcation theorem for semelparous Leslie models, in Dynamics, Games and Science, CIM Ser. Math. Sci., 1, Springer, Cham, 2015, 215–251.  Google Scholar

[14]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.  Google Scholar

[15]

N. V. DavydovaO. Diekmann and S. A. van Gils, On circulant populations. Ⅰ. The algebra of semelparity, Linear Algebra Appl., 398 (2005), 185-243.  doi: 10.1016/j.laa.2004.12.020.  Google Scholar

[16]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol., 11 (1981), 319-335.  doi: 10.1007/BF00276900.  Google Scholar

[17]

O. DiekmannY. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.  doi: 10.3934/dcds.2008.20.37.  Google Scholar

[18]

H. T. M. Eskola and S. A. H. Geritz, On the mechanistic derivation of various discrete-time population models, Bull. Math. Biol., 69 (2007), 329-346.  doi: 10.1007/s11538-006-9126-4.  Google Scholar

[19]

M. A. Fishman, Density effects in population growth: An exploration, Biosystems, 40 (1997), 219-236.  doi: 10.1016/S0303-2647(96)01649-8.  Google Scholar

[20]

J. E. Franke and A.-A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, J. Math. Biol., 30 (1991), 161-168.  doi: 10.1007/BF00160333.  Google Scholar

[21]

J. E. Franke and A.-A. Yakubu, Geometry of exclusion principles in discrete systems, J. Math. Anal. Appl., 168 (1992), 385-400.  doi: 10.1016/0022-247X(92)90167-C.  Google Scholar

[22]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations, SIAM J. Math. Anal., 34 (2003), 1007-1039.  doi: 10.1137/S0036141001392815.  Google Scholar

[23]

S. A. H. Geritz, Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50 (2005), 67-82.  doi: 10.1007/s00285-004-0280-8.  Google Scholar

[24]

S. A. H. GeritzM. GyllenbergF. J. A. Jacobs and K. Parvinen, Invasion dynamics and attractor inheritance, J. Math. Biol., 44 (2002), 548-560.  doi: 10.1007/s002850100136.  Google Scholar

[25]

S. A. H. Geritz and E. Kisdi, On the mechanistic underpinning of discrete-time population models with complex dynamics, J. Theoret. Biol., 228 (2004), 261-269.  doi: 10.1016/j.jtbi.2004.01.003.  Google Scholar

[26]

S. A. H. GeritzE. KisdiG. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.  doi: 10.1023/A:1006554906681.  Google Scholar

[27]

S. A. H. GeritzJ. A. J. MetzE. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027.  doi: 10.1103/PhysRevLett.78.2024.  Google Scholar

[28]

W. GovaertsR. K. GhazianiY. A. Kuznetsov and H. G. E. Meijer, Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29 (2007), 2644-2667.  doi: 10.1137/060653858.  Google Scholar

[29]

W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and N. Neirynck, A study of resonance tongues near a Chenciner bifurcation using MatcontM, European Nonlinear Dynamics Conference, 2011, 24–29. Google Scholar

[30]

A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[31]

M. GyllenbergI. Hanski and T. Lindström, Continuous versus discrete single species population models with adjustable reproductive strategies, Bull. Math. Biol., 59 (1997), 679-705.  doi: 10.1007/BF02458425.  Google Scholar

[32]

M. GyllenbergJ. Jiang and L. Niu, A note on global stability of three-dimensional Ricker models, J. Difference Equ. Appl., 25 (2019), 142-150.  doi: 10.1080/10236198.2019.1566459.  Google Scholar

[33]

M. Gyllenberg, J. Jiang, L. Niu and P. Yan, On the dynamics of multi-species Ricker models admitting a carrying simplex, J. Difference Equ. Appl., in press. doi: 10.1080/10236198.2019.1663182.  Google Scholar

[34]

M. GyllenbergJ. JiangL. Niu and P. Yan, On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discrete Contin. Dyn. Syst., 38 (2018), 615-650.  doi: 10.3934/dcds.2018027.  Google Scholar

[35]

M. GyllenbergP. Yan and Y. Wang, A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So, Appl. Math. Lett., 19 (2006), 1-7.  doi: 10.1016/j.aml.2005.01.002.  Google Scholar

[36]

J. K. Hale and A. S. Somolinos, Competition for fluctuating nutrient, J. Math. Biol., 18 (1983), 255-280.  doi: 10.1007/BF00276091.  Google Scholar

[37]

M. P. Hassell, Density-dependence in single-species populations, J. Anim. Ecol., 44 (1975), 283-295.  doi: 10.2307/3863.  Google Scholar

[38]

M. P. Hassell and H. N. Comins, Discrete time models for two-species competition, Theoret. Population Biology, 9 (1976), 202-221.  doi: 10.1016/0040-5809(76)90045-9.  Google Scholar

[39]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. Ⅲ. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[40]

M. W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.  doi: 10.1080/17513750801939236.  Google Scholar

[41]

J. Hofbauer, Heteroclinic cycles in ecological differential equations, Tatra Mt. Math. Publ., 4 (1994), 105-116.   Google Scholar

[42]

J. HofbauerV. Hutson and W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553-570.  doi: 10.1007/BF00276199.  Google Scholar

[43] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[44]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[45]

Z. Hou and S. Baigent, Global stability and repulsion in autonomous Kolmogorov systems, Commun. Pure Appl. Anal., 14 (2015), 1205-1238.  doi: 10.3934/cpaa.2015.14.1205.  Google Scholar

[46]

T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton-Holt Ricker model, SIAM J. Appl. Dyn. Syst., 13 (2014), 1442-1488.  doi: 10.1137/140955434.  Google Scholar

[47]

V. Hutson and W. Moran, Persistence of species obeying difference equations, J. Math. Biol., 15 (1982), 203-213.  doi: 10.1007/BF00275073.  Google Scholar

[48]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.  doi: 10.3934/dcds.2016.36.217.  Google Scholar

[49]

J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.  doi: 10.1007/s00285-016-1052-y.  Google Scholar

[50]

J. JiangL. Niu and Y. Wang, On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.  doi: 10.1007/s00285-015-0920-1.  Google Scholar

[51]

J. JiangL. Niu and D. Zhu, On the complete classification of nullcline stable competitive three-dimensional Gompertz models, Nonlinear Anal. Real World Appl., 20 (2014), 21-35.  doi: 10.1016/j.nonrwa.2014.04.006.  Google Scholar

[52]

F. G. W. Jones and J. N. Perry, Modelling populations of cyst-nematodes (Nematoda: Heteroderidae), J. Applied Ecology, 15 (1978), 349-371.  doi: 10.2307/2402596.  Google Scholar

[53]

R. Kon, Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points, J. Math. Biol., 48 (2004), 57-81.  doi: 10.1007/s00285-003-0224-8.  Google Scholar

[54]

R. Kon, Convex dominates concave: An exclusion principle in discrete-time Kolmogorov systems, Proc. Amer. Math. Soc., 134 (2006), 3025-3034.  doi: 10.1090/S0002-9939-06-08309-2.  Google Scholar

[55]

R. Kon and Y. Takeuchi, Permanence of host-parasitoid systems, Nonlinear Anal., 47 (2001), 1383-1393.  doi: 10.1016/S0362-546X(01)00273-5.  Google Scholar

[56]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[57]

Y. A. Kuznetsov and R. J. Sacker, Neimark-Sacker bifurcation, Scholarpedia, 3 (2008). doi: 10.4249/scholarpedia.1845.  Google Scholar

[58]

R. Law and A. R. Watkinson, Response-surface analysis of two-species competition: An experiment on Phleum arenarium and Vulpia fasciculata, J. Ecol., 75 (1987), 871-886.  doi: 10.2307/2260211.  Google Scholar

[59]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316-330.  doi: 10.1093/biomet/45.3-4.316.  Google Scholar

[60]

J. M. Levine and M. Rees, Coexistence and relative abundance in annual plant assemblages: The roles of competition and colonization, Amer. Naturalist, 160 (2002), 452-467.  doi: 10.1086/342073.  Google Scholar

[61]

Z. Lu and Y. Luo, Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Comput. Math. Appl., 46 (2003), 231-238.  doi: 10.1016/S0898-1221(03)90027-7.  Google Scholar

[62]

Z. Lu and W. Wang, Permanence and global attractivity for Lotka-Volterra difference systems, J. Math. Biol., 39 (1999), 269-282.  doi: 10.1007/s002850050171.  Google Scholar

[63]

R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.  doi: 10.1126/science.186.4164.645.  Google Scholar

[64]

R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist, 110 (1976), 573-599.  doi: 10.1086/283092.  Google Scholar

[65]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719512.  Google Scholar

[66]

J. Mierczyński, The ${C}^1$ property of convex carrying simplices for competitive maps, Ergodic Theory Dynam. Systems, (2018), 1–16. doi: 10.1017/etds.2018.85.  Google Scholar

[67]

J. Mierczyński, The ${C}^1$ property of convex carrying simplices for three-dimensional competitive maps, J. Difference Equ. Appl., 24 (2018), 1199-1209.  doi: 10.1080/10236198.2018.1428964.  Google Scholar

[68]

J. MierczyńskiL. Niu and A. Ruiz-Herrera, Linearization and invariant manifolds on the carrying simplex for competitive maps, J. Differential Equations, 267 (2019), 7385-7410.  doi: 10.1016/j.jde.2019.08.001.  Google Scholar

[69]

L. Niu and A. Ruiz-Herrera, Trivial dynamics in discrete-time systems: Carrying simplex and translation arcs, Nonlinearity, 31 (2018), 2633-2650.  doi: 10.1088/1361-6544/aab46e.  Google Scholar

[70]

M. Rees and M. Westoby, Game-theoretical evolution of seed mass in multi-species ecological models, Oikos, 78 (1997), 116-126.  doi: 10.2307/3545807.  Google Scholar

[71]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Board. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[72]

L.-I. W. Roeger, Discrete May-Leonard competition models. Ⅱ, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 841-860.  doi: 10.3934/dcdsb.2005.5.841.  Google Scholar

[73]

L.-I. W. Roeger and L. J. S. Allen, Discrete May–Leonard competition models. Ⅰ, J. Difference Equ. Appl., 10 (2004), 77-98.  doi: 10.1080/10236190310001603662.  Google Scholar

[74]

A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Equ. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.  Google Scholar

[75]

H. L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.  doi: 10.1016/0022-0396(86)90086-0.  Google Scholar

[76]

H. L. Smith, Planar competitive and cooperative difference equations, J. Differ. Equations Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

[77]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, RI, 2011.  Google Scholar

[78]

C. R. Townsend, M. Begon and J. L. Harper, Essentials of Ecology, Blackwell Publishing, 2008. Google Scholar

[79]

W. Van den bergW. A. H. Rossing and J. Grasman, Contest and scramble competition and the carry-over effect in Globodera spp. in potato-based crop rotations using an extended Ricker model, J. Nematol., 38 (2006), 210-220.   Google Scholar

[80]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka–Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[81]

G. C. Varley, G. R. Gradwell and M. P. Hassell, Insect Population Ecology, Blackwell Scientific Publications, Oxford, 1973. Google Scholar

[82]

Y. Wang and J. Jiang, Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.  doi: 10.1016/S0022-0396(02)00025-6.  Google Scholar

[83]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Differential Equations, 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[84]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, 1994, 353–364.  Google Scholar

[85]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc., 355 (2003), 713-734.  doi: 10.1090/S0002-9947-02-03103-3.  Google Scholar

[86]

E. C. Zeeman and M. L. Zeeman, An $n$-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[87]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

Figure 1.  A carrying simplex $ \Sigma $ with a repelling heteroclinic cycle $ \partial\Sigma $
Figure 2.  The phase portrait on $ \Sigma $ replaced by $ \Delta^1 $. A closed dot $ \bullet $ denotes a fixed point which attracts on $ \Sigma $, and an open dot $ \circ $ denotes the one which repels on $ \Sigma $. Each $ \Sigma $ stands for an equivalence class. Class $ 1 $ corresponds to Proposition 4.7 (a) and (b); class $ 2 $ corresponds to Proposition 4.7 (c); class $ 3 $ corresponds to Proposition 4.7 (d)
Figure 3.  The phase portrait on $ \Sigma $ for class $ 33 $. Every orbit in the interior of $ \Sigma $ converges to $ p $. The fixed point notation is as in Table 1
Figure 4.  The phase portrait on $ \Sigma $ for class $ 29 $. The fixed point notation is as in Table 1
Figure 5.  The orbit emanating from $ x_0 = (1, 0.0667, 0.0667) $ for the map $ T\in\mathrm{CLG}(3) $ with the parameter matrix $ U $ given in Example 5.1 and $ r_1 = 1, r_2 = 0.2, r_3 = 1 $ leads away from $ \partial \Sigma $ and tends to an attracting invariant closed curve, and the orbit emanating from $ x_0 = (0.2151, 0.746, 0.0173) $ also tends to an attracting invariant closed curve
Figure 6.  The orbit emanating from $ x_0 = (1, 0.0667, 0.0667) $ for the map $ T\in\mathrm{CGAA}(3) $ with the parameter matrix $ U $ given in Example 5.1 and $ r_1 = r_2 = r_3 = 1 $, $ c_1 = \frac{1}{10}, c_2 = \frac{1}{5}, c_3 = \frac{1}{5} $ leads away from $ \partial \Sigma $ and tends to an attracting invariant closed curve, and the orbit emanating from $ x_0 = (0.7, 0.1642, 0.1685) $ also tends to an attracting invariant closed curve
Figure 7.  The orbit emanating from $ x_0 = (0.04, 0.12, 0.36) $ for the map $ T\in\mathrm{CGAA}(3) $ with the parameter matrix $ U $ given in Example 5.3 and $ r_1 = r_2 = r_3 = 1 $, $ c_1 = 0.1, c_2 = 0.79, c_3 = 0.1 $ tends to an attracting invariant closed curve, while the orbit emanating from $ x_0 = (0.0002, 0.023, 0.486) $ approaches the heteroclinic cycle $ \partial \Sigma $
Figure 8.  The orbit emanating from $ x_0 = (0.427, 0.8574, 0.014) $ for the map $ T\in\mathrm{MFC}(3) $ with the parameter matrix $ U $ given in Example 5.4, $ c = \frac{4}{5} $ and $ r_1 = r_3 = 1, r_2 = 0.03 $ tends to an attracting invariant closed curve
Figure 9.  The orbit emanating from $ x_0 = (0.5962, 0.4857, 0.193) $ for the map $ T\in\mathrm{MFC}(3) $ with the parameter matrix $ U $ given in Example 5.5, $ c = \frac{4}{5} $ and $ r_1 = r_3 = 1, r_2 = 0.02 $ tends to an attracting invariant closed curve
Figure 10.  The orbit emanating from $ x_0 = (0.3128, 0.8347, 0.0199) $ for the map $ T\in\mathrm{CRC}(3) $ with the parameter matrix $ U $ given in Example 5.4 and $ r_1 = \frac{1}{11}, r_2 = 0.01, r_3 = \frac{2}{7} $ tends to an attracting invariant closed curve
Table 1.  The $33$ equivalence classes in $\mathrm{DCS}(3, f)$, where $\gamma_{ij} = \mu_{ii}-\mu_{ji}$, $\beta_{ij} = \frac{\mu_{jj}-\mu_{ij}}{\mu_{ii}\mu_{jj}-\mu_{ij}\mu_{ji}}$ ($\beta_{ij}$ is well defined; see Remark 4.6), $i, j = 1, 2, 3$ and $i\neq j$, and each $\Sigma$ is given by a representative map of that class. A fixed point is represented by a closed dot $\bullet$ if it attracts on $\Sigma$, by an open dot $\circ$ if it repels on $\Sigma$, and by the intersection of its stable and unstable manifolds if it is a saddle on $\Sigma$. For classes $1-25$ and $33$, every orbit converges to some fixed point; for classes $26-31$, Neimark-Sacker bifurcations might occur; for class $27$, $\partial \Sigma$ is a heteroclinic cycle; for class $32$, the unique positive fixed point is a repeller and Neimark-Sacker bifurcation cannot occur in this class
[1]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[2]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[3]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[4]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[5]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[6]

Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3743-3766. doi: 10.3934/dcdsb.2016119

[7]

Jifa Jiang, Lei Niu. On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 217-244. doi: 10.3934/dcds.2016.36.217

[8]

Ling-Hao Zhang, Wei Wang. Direct approach to detect the heteroclinic bifurcation of the planar nonlinear system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 591-604. doi: 10.3934/dcds.2017024

[9]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[10]

Stephen Baigent. Convex geometry of the carrying simplex for the May-Leonard map. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1697-1723. doi: 10.3934/dcdsb.2018288

[11]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[12]

Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071

[13]

Odo Diekmann, Yi Wang, Ping Yan. Carrying simplices in discrete competitive systems and age-structured semelparous populations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 37-52. doi: 10.3934/dcds.2008.20.37

[14]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[15]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[16]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[17]

Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139

[18]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[19]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[20]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (124)
  • HTML views (113)
  • Cited by (1)

Other articles
by authors

[Back to Top]