• Previous Article
    Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation
  • DCDS Home
  • This Issue
  • Next Article
    Permanence and universal classification of discrete-time competitive systems via the carrying simplex
March  2020, 40(3): 1665-1702. doi: 10.3934/dcds.2020089

On the fundamental solution and its application in a large class of differential systems determined by Volterra type operators with delay

Department of Mathematics University of Pannonia, 8200 Veszprém, Egyetem u. 10., Hungary

* Corresponding author

Received  May 2019 Published  December 2019

Fund Project: The research of the authors has been supported by Hungarian National Foundations for Scientific Research Grant No. K120186

The variation-of-constants formula is one of the principal tools of the theory of differential equations. There are many papers dealing with different versions of the variation-of-constants formula and its applications. Our main purpose in this paper is to give a variation-of-constants formula for inhomogeneous linear functional differential systems determined by general Volterra type operators with delay. Our treatment of the delay in the considered systems is completely different from the usual methods. We deal with the representation of the studied Volterra type operators. Some existence and uniqueness theorems are obtained for the studied linear functional differential and integral systems. Finally, some applications are given.

Citation: István Győri, László Horváth. On the fundamental solution and its application in a large class of differential systems determined by Volterra type operators with delay. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1665-1702. doi: 10.3934/dcds.2020089
References:
[1] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press, Inc., Boston, MA, 1990.  doi: 10.1016/C2009-0-22273-2.  Google Scholar
[2]

O. Arino and E. Sánches, A variation of constants formula for an abstract functional differential equation of retarded type, Differential Integral Equations, 9 (1996), 1305-1320.   Google Scholar

[3]

J. BaštinecL. BerezanskyJ. Diblik and Z. Šmarda, On a delay population model with a quadratic nonlinearity without positive steady state, Appl. Math. Comput., 227 (2014), 622-629.  doi: 10.1016/j.amc.2013.11.061.  Google Scholar

[4]

L. C. Becker, Principal matrix solutions and variation of parameters for a Volterra integro-differential equation and its adjoint, Electron. J. Qual. Theory Differ. Equ., 2006 (2006), 1-22.  doi: 10.14232/ejqtde.2006.1.14.  Google Scholar

[5]

A. Carrasco and H. Leiva, Variation of constants formula for functional parabolic partial differential equations, Electron. J. Differential Equations, (2007), 20pp.  Google Scholar

[6]

R. CollegariM. Federson and M. Frasson, Linear FDEs in the frame of generalized ODEs: Variation-of-constants formula, Czechoslovak Math. J., 68 (2018), 889-920.  doi: 10.21136/CMJ.2018.0023-17.  Google Scholar

[7] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511569395.  Google Scholar
[8]

C. Corduneanu, Y. Li and M. Mahdavi, Functional Differential Equations: Advances and Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., NJ, 2016. doi: 10.1002/9781119189503.  Google Scholar

[9]

R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20, Springer-Verlag, New York-Heidelberg, 1977. doi: 10.1007/978-1-4684-9467-9.  Google Scholar

[10]

P. EloeM. Islam and B. Zhang, Uniform asymptotic stability in linear Volterra integrodifferential equations with application to delay systems, Dynam. Systems Appl., 9 (2000), 331-344.   Google Scholar

[11]

T. Faria and G. Röst, Persistence, permanence and global stability for an n-dimensional Nicholson system, J. Dynam. Differential Equations, 26 (2014), 723-744.  doi: 10.1007/s10884-014-9381-2.  Google Scholar

[12]

M. FunakuboT. Hara and S. Sakata, On the uniform asymptotic stability for a linear integro-differential equation of Volterra type, J. Math. Anal. Appl., 324 (2006), 1036-1049.  doi: 10.1016/j.jmaa.2005.12.053.  Google Scholar

[13]

T. Furumochi and S. Matsuoka, Stability and boundedness in Volterra integro-differential equations, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci., 32 (1999), 25-40.   Google Scholar

[14]

R. Grimmer and G. Seifert, Stability properties of Volterra integrodifferential equations, J. Differential Equations, 19 (1975), 142-166.  doi: 10.1016/0022-0396(75)90025-X.  Google Scholar

[15] G. GripenbergS.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9780511662805.  Google Scholar
[16]

S. I. Grossman and R. K. Miller, Perturbation theory for Volterra integrodifferential systems, J. Differential Equations, 8 (1970), 457-474.  doi: 10.1016/0022-0396(70)90018-5.  Google Scholar

[17]

I. Győri and L. Horváth, Sharp estimation for the solutions of delay differential and Halanay type inequalities, Discrete Contin. Dyn. Syst., 37 (2017), 3211-3242.  doi: 10.3934/dcds.2017137.  Google Scholar

[18]

I. Győri and L. Horváth, Sharp estimation for the solutions of inhomogeneous delay differential and Halanay-type inequalities, Electron. J. Qual. Theory Differ. Equ., (2018), 1–18. doi: 10.14232/ejqtde.2018.1.54.  Google Scholar

[19]

Y. HinoS. MurakamiT. Naito and N. V. Minh, A variation-of-constants formula for abstract functional differential equations in the phase space, J. Differential Equations, 179 (2002), 336-355.  doi: 10.1006/jdeq.2001.4020.  Google Scholar

[20]

J. Horváth, Topological Vector Spaces and Distributions, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Google Scholar

[21]

L. Horváth, An integral inequality, Math. Inequal. Appl., 4 (2001), 507-513.  doi: 10.7153/mia-04-45.  Google Scholar

[22]

L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics, 46, The Macmillan Co., New York, 1964.  Google Scholar

[23] J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Academic Press, New York-London, 1966.   Google Scholar
[24]

S. Murakami, Linear periodic functional differential equations with infinite delay, Funkcial. Ekvac., 29 (1986), 335-361.   Google Scholar

[25]

M. Rama Mohana Rao and P. Srinivas, Asymptotic behavior of solutions of Volterra integro-differential equations, Proc. Amer. Math. Soc., 94 (1985), 55-60.  doi: 10.1090/S0002-9939-1985-0781056-5.  Google Scholar

[26]

J. Šremr, On differentiation of a Lebesgue integral with respect to a parameter, Math. Appl. (Brno), 1 (2012), 91-116.  doi: 10.13164/ma.2012.06.  Google Scholar

[27]

C. Tunç and O. Tunç, New qualitative criteria for solutions of Volterra integro-differential equations, Arab J. Basic Appl. Sciences, 25 (2018), 158-165.  doi: 10.1080/25765299.2018.1509554.  Google Scholar

[28]

K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46-66.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

show all references

References:
[1] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press, Inc., Boston, MA, 1990.  doi: 10.1016/C2009-0-22273-2.  Google Scholar
[2]

O. Arino and E. Sánches, A variation of constants formula for an abstract functional differential equation of retarded type, Differential Integral Equations, 9 (1996), 1305-1320.   Google Scholar

[3]

J. BaštinecL. BerezanskyJ. Diblik and Z. Šmarda, On a delay population model with a quadratic nonlinearity without positive steady state, Appl. Math. Comput., 227 (2014), 622-629.  doi: 10.1016/j.amc.2013.11.061.  Google Scholar

[4]

L. C. Becker, Principal matrix solutions and variation of parameters for a Volterra integro-differential equation and its adjoint, Electron. J. Qual. Theory Differ. Equ., 2006 (2006), 1-22.  doi: 10.14232/ejqtde.2006.1.14.  Google Scholar

[5]

A. Carrasco and H. Leiva, Variation of constants formula for functional parabolic partial differential equations, Electron. J. Differential Equations, (2007), 20pp.  Google Scholar

[6]

R. CollegariM. Federson and M. Frasson, Linear FDEs in the frame of generalized ODEs: Variation-of-constants formula, Czechoslovak Math. J., 68 (2018), 889-920.  doi: 10.21136/CMJ.2018.0023-17.  Google Scholar

[7] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511569395.  Google Scholar
[8]

C. Corduneanu, Y. Li and M. Mahdavi, Functional Differential Equations: Advances and Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., NJ, 2016. doi: 10.1002/9781119189503.  Google Scholar

[9]

R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20, Springer-Verlag, New York-Heidelberg, 1977. doi: 10.1007/978-1-4684-9467-9.  Google Scholar

[10]

P. EloeM. Islam and B. Zhang, Uniform asymptotic stability in linear Volterra integrodifferential equations with application to delay systems, Dynam. Systems Appl., 9 (2000), 331-344.   Google Scholar

[11]

T. Faria and G. Röst, Persistence, permanence and global stability for an n-dimensional Nicholson system, J. Dynam. Differential Equations, 26 (2014), 723-744.  doi: 10.1007/s10884-014-9381-2.  Google Scholar

[12]

M. FunakuboT. Hara and S. Sakata, On the uniform asymptotic stability for a linear integro-differential equation of Volterra type, J. Math. Anal. Appl., 324 (2006), 1036-1049.  doi: 10.1016/j.jmaa.2005.12.053.  Google Scholar

[13]

T. Furumochi and S. Matsuoka, Stability and boundedness in Volterra integro-differential equations, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci., 32 (1999), 25-40.   Google Scholar

[14]

R. Grimmer and G. Seifert, Stability properties of Volterra integrodifferential equations, J. Differential Equations, 19 (1975), 142-166.  doi: 10.1016/0022-0396(75)90025-X.  Google Scholar

[15] G. GripenbergS.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9780511662805.  Google Scholar
[16]

S. I. Grossman and R. K. Miller, Perturbation theory for Volterra integrodifferential systems, J. Differential Equations, 8 (1970), 457-474.  doi: 10.1016/0022-0396(70)90018-5.  Google Scholar

[17]

I. Győri and L. Horváth, Sharp estimation for the solutions of delay differential and Halanay type inequalities, Discrete Contin. Dyn. Syst., 37 (2017), 3211-3242.  doi: 10.3934/dcds.2017137.  Google Scholar

[18]

I. Győri and L. Horváth, Sharp estimation for the solutions of inhomogeneous delay differential and Halanay-type inequalities, Electron. J. Qual. Theory Differ. Equ., (2018), 1–18. doi: 10.14232/ejqtde.2018.1.54.  Google Scholar

[19]

Y. HinoS. MurakamiT. Naito and N. V. Minh, A variation-of-constants formula for abstract functional differential equations in the phase space, J. Differential Equations, 179 (2002), 336-355.  doi: 10.1006/jdeq.2001.4020.  Google Scholar

[20]

J. Horváth, Topological Vector Spaces and Distributions, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Google Scholar

[21]

L. Horváth, An integral inequality, Math. Inequal. Appl., 4 (2001), 507-513.  doi: 10.7153/mia-04-45.  Google Scholar

[22]

L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics, 46, The Macmillan Co., New York, 1964.  Google Scholar

[23] J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Academic Press, New York-London, 1966.   Google Scholar
[24]

S. Murakami, Linear periodic functional differential equations with infinite delay, Funkcial. Ekvac., 29 (1986), 335-361.   Google Scholar

[25]

M. Rama Mohana Rao and P. Srinivas, Asymptotic behavior of solutions of Volterra integro-differential equations, Proc. Amer. Math. Soc., 94 (1985), 55-60.  doi: 10.1090/S0002-9939-1985-0781056-5.  Google Scholar

[26]

J. Šremr, On differentiation of a Lebesgue integral with respect to a parameter, Math. Appl. (Brno), 1 (2012), 91-116.  doi: 10.13164/ma.2012.06.  Google Scholar

[27]

C. Tunç and O. Tunç, New qualitative criteria for solutions of Volterra integro-differential equations, Arab J. Basic Appl. Sciences, 25 (2018), 158-165.  doi: 10.1080/25765299.2018.1509554.  Google Scholar

[28]

K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46-66.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

[1]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[2]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[3]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[4]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[5]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[6]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, 2007, 2007 (Special) : 28-34. doi: 10.3934/proc.2007.2007.28

[7]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[8]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[9]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[10]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[11]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[12]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[13]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[14]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[15]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[16]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[17]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[18]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[19]

Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042

[20]

Yong He. Switching controls for linear stochastic differential systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020005

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (81)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]