For $ n \ge 1 $, consider the space of affine conjugacy classes of topological cubic polynomials $ f: \mathbb{C} \to \mathbb{C} $ with a period $ n $ ramification point. It is shown that this space is a connected topological space.
Citation: |
Figure 4. On both pictures, the doted curve represents the outer boundary of $ \partial A_{ext}' $. The lightest gray regions are $ {V'_0\cup V'_1} $. The other gray regions are the complement of $ V'_0\cup V'_1 $ in $ f_0^{-1}(D) $ (left) and in $ f_1^{-1}(D) $ (right).The lines in the darker gray regions represent the preimages of $ \gamma $ by $ f_0 $ (left) and $ f_1 $ (right) where $ \gamma $ is as in Section 4.2
[1] |
J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci., 9 (1923), 406-407.
![]() |
[2] |
A. Bonifant, J. Kiwi and J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅱ. Escape regions, Conform. Geom. Dyn., 14 (2010), 68-112.
doi: 10.1090/S1088-4173-10-00204-3.![]() ![]() ![]() |
[3] |
B. Branner, Cubic polynomials: Turning around the connectedness locus, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, (1993), 391–427.
![]() ![]() |
[4] |
B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅰ. The global topology of parameter space, Acta Math., 160 (1988), 143-206.
doi: 10.1007/BF02392275.![]() ![]() ![]() |
[5] |
B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅱ. Patterns and parapatterns, Acta Math., 169 (1992), 229-325.
doi: 10.1007/BF02392761.![]() ![]() ![]() |
[6] |
G. Z. Cui and L. Tan., A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.
doi: 10.1007/s00222-010-0281-8.![]() ![]() ![]() |
[7] |
S. V. F. Levy, Critically Finite Rational Maps, PhD thesis, Princeton University, 1986.
![]() ![]() |
[8] |
J. Milnor, Dynamics in One Complex Variable, Third edition, Annals of Mathematics Studies,
160. Princeton University Press, Princeton, NJ, 2006.
![]() ![]() |
[9] |
J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ, Complex Dynamics, A K Peters, Wellesley, MA, (2009), 333–411.
doi: 10.1201/b10617-13.![]() ![]() ![]() |
[10] |
M. Rees, Views of parameter space: Topographer and Resident, Astérisque, (2003).
![]() ![]() |
Illustration of Lemma 3.1 for a topological polynomial
Illustration of the construction of the twisting loop corresponding to
Illustration of the annulus
On both pictures, the doted curve represents the outer boundary of