• Previous Article
    An epiperimetric inequality approach to the parabolic Signorini problem
  • DCDS Home
  • This Issue
  • Next Article
    Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy
March  2020, 40(3): 1799-1811. doi: 10.3934/dcds.2020094

Topological cubic polynomials with one periodic ramification point

1. 

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

2. 

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile

Received  July 2019 Published  December 2019

Fund Project: First author is supported by "Fondecyt Iniciación 11170276".
Second author is supported by CONICYT PIA ACT172001 and "Fondecyt 1160550".
Both authors partially supported by MathAmsud 18-Math-02 HidiParHodyn.

For $ n \ge 1 $, consider the space of affine conjugacy classes of topological cubic polynomials $ f: \mathbb{C} \to \mathbb{C} $ with a period $ n $ ramification point. It is shown that this space is a connected topological space.

Citation: Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094
References:
[1]

J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci., 9 (1923), 406-407.   Google Scholar

[2]

A. BonifantJ. Kiwi and J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅱ. Escape regions, Conform. Geom. Dyn., 14 (2010), 68-112.  doi: 10.1090/S1088-4173-10-00204-3.  Google Scholar

[3]

B. Branner, Cubic polynomials: Turning around the connectedness locus, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, (1993), 391–427.  Google Scholar

[4]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅰ. The global topology of parameter space, Acta Math., 160 (1988), 143-206.  doi: 10.1007/BF02392275.  Google Scholar

[5]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅱ. Patterns and parapatterns, Acta Math., 169 (1992), 229-325.  doi: 10.1007/BF02392761.  Google Scholar

[6]

G. Z. Cui and L. Tan., A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.  doi: 10.1007/s00222-010-0281-8.  Google Scholar

[7]

S. V. F. Levy, Critically Finite Rational Maps, PhD thesis, Princeton University, 1986.  Google Scholar

[8]

J. Milnor, Dynamics in One Complex Variable, Third edition, Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.  Google Scholar

[9]

J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ, Complex Dynamics, A K Peters, Wellesley, MA, (2009), 333–411. doi: 10.1201/b10617-13.  Google Scholar

[10]

M. Rees, Views of parameter space: Topographer and Resident, Astérisque, (2003).  Google Scholar

show all references

References:
[1]

J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci., 9 (1923), 406-407.   Google Scholar

[2]

A. BonifantJ. Kiwi and J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅱ. Escape regions, Conform. Geom. Dyn., 14 (2010), 68-112.  doi: 10.1090/S1088-4173-10-00204-3.  Google Scholar

[3]

B. Branner, Cubic polynomials: Turning around the connectedness locus, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, (1993), 391–427.  Google Scholar

[4]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅰ. The global topology of parameter space, Acta Math., 160 (1988), 143-206.  doi: 10.1007/BF02392275.  Google Scholar

[5]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. Ⅱ. Patterns and parapatterns, Acta Math., 169 (1992), 229-325.  doi: 10.1007/BF02392761.  Google Scholar

[6]

G. Z. Cui and L. Tan., A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.  doi: 10.1007/s00222-010-0281-8.  Google Scholar

[7]

S. V. F. Levy, Critically Finite Rational Maps, PhD thesis, Princeton University, 1986.  Google Scholar

[8]

J. Milnor, Dynamics in One Complex Variable, Third edition, Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.  Google Scholar

[9]

J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ, Complex Dynamics, A K Peters, Wellesley, MA, (2009), 333–411. doi: 10.1201/b10617-13.  Google Scholar

[10]

M. Rees, Views of parameter space: Topographer and Resident, Astérisque, (2003).  Google Scholar

Figure 1.  Illustration of Lemma 3.1 for a topological polynomial $ f $ where $ [(f, c, c')]\in{\mathcal{E}}({\mathcal{F}}_4) $ has kneading word $ 1000 $
Figure 2.  Illustration of the construction of the twisting loop corresponding to $ m = 3 $ and kneading word $ 1000 $. The exterior curve in black is the level curve $ g_{f_0} = g_{f_0}(c_0') $. The set $ f_0^{-1}(Y) $ is drawn in gray
Figure 3.  Illustration of the annulus $ A $ around the twisting loop $ \tau $ (left) and its preimage (right)
Figure 4.  On both pictures, the doted curve represents the outer boundary of $ \partial A_{ext}' $. The lightest gray regions are $ {V'_0\cup V'_1} $. The other gray regions are the complement of $ V'_0\cup V'_1 $ in $ f_0^{-1}(D) $ (left) and in $ f_1^{-1}(D) $ (right).The lines in the darker gray regions represent the preimages of $ \gamma $ by $ f_0 $ (left) and $ f_1 $ (right) where $ \gamma $ is as in Section 4.2
[1]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[2]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

[3]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[4]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004

[5]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[6]

Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252

[7]

Bin Han. Some multivariate polynomials for doubled permutations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020098

[8]

Janos Kollar. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic Research Announcements, 1997, 3: 17-27.

[9]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[10]

Anca Radulescu. The connected Isentropes conjecture in a space of quartic polynomials. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 139-175. doi: 10.3934/dcds.2007.19.139

[11]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[12]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

[13]

Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319

[14]

Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004

[15]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[16]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021001

[17]

R. Wong, L. Zhang. Global asymptotics of Hermite polynomials via Riemann-Hilbert approach. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 661-682. doi: 10.3934/dcdsb.2007.7.661

[18]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[19]

John Shareshian and Michelle L. Wachs. q-Eulerian polynomials: Excedance number and major index. Electronic Research Announcements, 2007, 13: 33-45.

[20]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (134)
  • HTML views (93)
  • Cited by (0)

Other articles
by authors

[Back to Top]