March  2020, 40(3): 1847-1878. doi: 10.3934/dcds.2020096

Convergence to equilibrium for a bulk–surface Allen–Cahn system coupled through a nonlinear Robin boundary condition

1. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

2. 

School of Mathematical Sciences, Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Handan Road 220, Shanghai 200433, China

* Corresponding author: Hao Wu

Received  July 2019 Revised  October 2019 Published  December 2019

Fund Project: K. F. Lam is supported by a Direct Grant of CUHK (project 4053288), H. Wu is supported by NNSFC grant No. 11631011 and the Shanghai Center for Mathematical Sciences at Fudan University

We consider a coupled bulk–surface Allen–Cahn system affixed with a Robin-type boundary condition between the bulk and surface variables. This system can also be viewed as a relaxation to a bulk–surface Allen–Cahn system with non-trivial transmission conditions. Assuming that the nonlinearities are real analytic, we prove the convergence of every global strong solution to a single equilibrium as time tends to infinity. Furthermore, we obtain an estimate on the rate of convergence. The proof relies on an extended Łojasiewicz–Simon type inequality for the bulk–surface coupled system. Compared with previous works, new difficulties arise as in our system the surface variable is no longer the trace of the bulk variable, but now they are coupled through a nonlinear Robin boundary condition.

Citation: Kei Fong Lam, Hao Wu. Convergence to equilibrium for a bulk–surface Allen–Cahn system coupled through a nonlinear Robin boundary condition. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1847-1878. doi: 10.3934/dcds.2020096
References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Met., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

I. Babuška, The finite element method with penalty, Math. Comput., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

J. W. Barrett and C. M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method, Numer. Math., 49 (1986), 343-366.  doi: 10.1007/BF01389536.  Google Scholar

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[5]

L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12-27.  doi: 10.1016/j.na.2012.11.010.  Google Scholar

[6]

C. CavaterraC. G. GalM. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[7]

C. CavaterraM. Grasselli and H. Wu, Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 1855-1890.  doi: 10.3934/cpaa.2014.13.1855.  Google Scholar

[8]

X. F. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[9]

R. ChillE. Făsangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.  doi: 10.1002/mana.200410431.  Google Scholar

[10]

P. Colli and T. Fukao, The Allen-Cahn equation with dynamic boundary conditions and mass constraints, Math. Models Appl. Sci., 38 (2015), 3950-3967.  doi: 10.1002/mma.3329.  Google Scholar

[11]

P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413-433.  doi: 10.1016/j.na.2015.07.011.  Google Scholar

[12]

P. ColliT. Fukao and K. F. Lam, On a coupled bulk-surface Allen-Cahn system with an affine linear transmission condition and its approximation by a Robin boundary condition, Nonlinear Anal., 184 (2019), 116-147.  doi: 10.1016/j.na.2018.10.018.  Google Scholar

[13]

P. Colli, T. Fukao and H. Wu, On a transmission problem for equation and dynamic boundary condition of Cahn-Hilliard type with nonsmooth potentials, Math. Nachr., accepted for publication, 2019. Google Scholar

[14]

P. ColliG. GilardiR. Nakayashiki and K. Shirakawa, A class of quasi-linear Allen-Cahn type equations with dynamic boundary conditions, Nonlinear Anal., 158 (2017), 32-59.  doi: 10.1016/j.na.2017.03.020.  Google Scholar

[15]

P. ColliG. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994.  doi: 10.1016/j.jmaa.2014.05.008.  Google Scholar

[16]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[17]

C. M. ElliottT. Ranner and C. Venkataraman, Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics, SIAM J. Math. Anal., 49 (2017), 360-397.  doi: 10.1137/15M1050811.  Google Scholar

[18]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition, Adv. Differential Equations, 11 (2006), 481-510.   Google Scholar

[19]

C. G. Gal, A Cahn-Hilliard model in bounded domains with permeable walls, Math. Meth. Appl. Sci., 29 (2006), 2009-2036.  doi: 10.1002/mma.757.  Google Scholar

[20]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[21]

C. G. Gal and M. Grasselli, On the asymptotic behavior of the Caginalp system with dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 689-710.  doi: 10.3934/cpaa.2009.8.689.  Google Scholar

[22]

C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst., 22 (2008), 1041-1063.  doi: 10.3934/dcds.2008.22.1041.  Google Scholar

[23]

H. Garcke and P. Knopf, Weak solutions of the Cahn-Hilliard system with dynamic boundary conditions: A gradient flow approach, preprint, arXiv: 1810.09817. Google Scholar

[24]

G. R. GoldsteinA. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non permeable walls, Physica D, 240 (2011), 754-766.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.  Google Scholar

[26]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var., 9 (1999), 95-124.  doi: 10.1007/s005260050133.  Google Scholar

[27]

A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36.   Google Scholar

[28]

T. Illmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom., 38 (1993), 417-461.  doi: 10.4310/jdg/1214454300.  Google Scholar

[29]

M. A. Jendoubi, A simple unified approach to some convergence theorem of L. Simon, J. Funct. Anal., 153 (1998), 187-202.  doi: 10.1006/jfan.1997.3174.  Google Scholar

[30]

R. KenzlerF. EurichP. MaassB. RinnJ. SchroppE. Bohl and W. Dieterich, Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157.  doi: 10.1016/S0010-4655(00)00159-4.  Google Scholar

[31]

M. Kleman and O. D. Lavrentovich, Topological point defects in nematic liquid crystals, Phil. Mag., 86 (2004), 4117-4137.  doi: 10.1080/14786430600593016.  Google Scholar

[32]

P. Knopf and K. F. Lam, Convergence of a Robin boundary approximation for a Cahn-Hilliard system with dynamic boundary conditions, preprint, arXiv: 1908.06124. Google Scholar

[33]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[34]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.  Google Scholar

[35]

C. Liu and H. Wu, An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: Model derivation and mathematical analysis, Arch. Rational Mech. Anal., 233 (2019), 167-247.  doi: 10.1007/s00205-019-01356-x.  Google Scholar

[36]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[37]

T. Motoda, Time periodic solutions of Cahn-Hilliard systems with dynamic boundary conditions, AIMS Math., 3 (2018), 263-287.   Google Scholar

[38]

T. Z. QianX. P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333-360.  doi: 10.1017/S0022112006001935.  Google Scholar

[39]

R. Racke and S. M. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.   Google Scholar

[40]

L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 525-571.  doi: 10.2307/2006981.  Google Scholar

[41]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary conditions, Nonlinear Anal., 72 (2010), 3028-3048.  doi: 10.1016/j.na.2009.11.043.  Google Scholar

[42]

K. Taira, Semigroups, Boundary Value Problems, and Markov Process, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-09857-8.  Google Scholar

[43]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[44]

H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition, Asymptot. Anal., 54 (2007), 71-92.   Google Scholar

[45]

H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88.   Google Scholar

[46]

H. Wu and S. M. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204 (2004), 511-531.  doi: 10.1016/j.jde.2004.05.004.  Google Scholar

[47]

E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[48]

S. M. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133. Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203492222.  Google Scholar

show all references

References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Met., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

I. Babuška, The finite element method with penalty, Math. Comput., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

J. W. Barrett and C. M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method, Numer. Math., 49 (1986), 343-366.  doi: 10.1007/BF01389536.  Google Scholar

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.  doi: 10.1002/9781118788295.ch4.  Google Scholar

[5]

L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12-27.  doi: 10.1016/j.na.2012.11.010.  Google Scholar

[6]

C. CavaterraC. G. GalM. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[7]

C. CavaterraM. Grasselli and H. Wu, Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 1855-1890.  doi: 10.3934/cpaa.2014.13.1855.  Google Scholar

[8]

X. F. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[9]

R. ChillE. Făsangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.  doi: 10.1002/mana.200410431.  Google Scholar

[10]

P. Colli and T. Fukao, The Allen-Cahn equation with dynamic boundary conditions and mass constraints, Math. Models Appl. Sci., 38 (2015), 3950-3967.  doi: 10.1002/mma.3329.  Google Scholar

[11]

P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413-433.  doi: 10.1016/j.na.2015.07.011.  Google Scholar

[12]

P. ColliT. Fukao and K. F. Lam, On a coupled bulk-surface Allen-Cahn system with an affine linear transmission condition and its approximation by a Robin boundary condition, Nonlinear Anal., 184 (2019), 116-147.  doi: 10.1016/j.na.2018.10.018.  Google Scholar

[13]

P. Colli, T. Fukao and H. Wu, On a transmission problem for equation and dynamic boundary condition of Cahn-Hilliard type with nonsmooth potentials, Math. Nachr., accepted for publication, 2019. Google Scholar

[14]

P. ColliG. GilardiR. Nakayashiki and K. Shirakawa, A class of quasi-linear Allen-Cahn type equations with dynamic boundary conditions, Nonlinear Anal., 158 (2017), 32-59.  doi: 10.1016/j.na.2017.03.020.  Google Scholar

[15]

P. ColliG. Gilardi and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972-994.  doi: 10.1016/j.jmaa.2014.05.008.  Google Scholar

[16]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[17]

C. M. ElliottT. Ranner and C. Venkataraman, Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics, SIAM J. Math. Anal., 49 (2017), 360-397.  doi: 10.1137/15M1050811.  Google Scholar

[18]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition, Adv. Differential Equations, 11 (2006), 481-510.   Google Scholar

[19]

C. G. Gal, A Cahn-Hilliard model in bounded domains with permeable walls, Math. Meth. Appl. Sci., 29 (2006), 2009-2036.  doi: 10.1002/mma.757.  Google Scholar

[20]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[21]

C. G. Gal and M. Grasselli, On the asymptotic behavior of the Caginalp system with dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 689-710.  doi: 10.3934/cpaa.2009.8.689.  Google Scholar

[22]

C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst., 22 (2008), 1041-1063.  doi: 10.3934/dcds.2008.22.1041.  Google Scholar

[23]

H. Garcke and P. Knopf, Weak solutions of the Cahn-Hilliard system with dynamic boundary conditions: A gradient flow approach, preprint, arXiv: 1810.09817. Google Scholar

[24]

G. R. GoldsteinA. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non permeable walls, Physica D, 240 (2011), 754-766.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.  Google Scholar

[26]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var., 9 (1999), 95-124.  doi: 10.1007/s005260050133.  Google Scholar

[27]

A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36.   Google Scholar

[28]

T. Illmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom., 38 (1993), 417-461.  doi: 10.4310/jdg/1214454300.  Google Scholar

[29]

M. A. Jendoubi, A simple unified approach to some convergence theorem of L. Simon, J. Funct. Anal., 153 (1998), 187-202.  doi: 10.1006/jfan.1997.3174.  Google Scholar

[30]

R. KenzlerF. EurichP. MaassB. RinnJ. SchroppE. Bohl and W. Dieterich, Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157.  doi: 10.1016/S0010-4655(00)00159-4.  Google Scholar

[31]

M. Kleman and O. D. Lavrentovich, Topological point defects in nematic liquid crystals, Phil. Mag., 86 (2004), 4117-4137.  doi: 10.1080/14786430600593016.  Google Scholar

[32]

P. Knopf and K. F. Lam, Convergence of a Robin boundary approximation for a Cahn-Hilliard system with dynamic boundary conditions, preprint, arXiv: 1908.06124. Google Scholar

[33]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[34]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.  Google Scholar

[35]

C. Liu and H. Wu, An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: Model derivation and mathematical analysis, Arch. Rational Mech. Anal., 233 (2019), 167-247.  doi: 10.1007/s00205-019-01356-x.  Google Scholar

[36]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[37]

T. Motoda, Time periodic solutions of Cahn-Hilliard systems with dynamic boundary conditions, AIMS Math., 3 (2018), 263-287.   Google Scholar

[38]

T. Z. QianX. P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333-360.  doi: 10.1017/S0022112006001935.  Google Scholar

[39]

R. Racke and S. M. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.   Google Scholar

[40]

L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 525-571.  doi: 10.2307/2006981.  Google Scholar

[41]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary conditions, Nonlinear Anal., 72 (2010), 3028-3048.  doi: 10.1016/j.na.2009.11.043.  Google Scholar

[42]

K. Taira, Semigroups, Boundary Value Problems, and Markov Process, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-09857-8.  Google Scholar

[43]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[44]

H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition, Asymptot. Anal., 54 (2007), 71-92.   Google Scholar

[45]

H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88.   Google Scholar

[46]

H. Wu and S. M. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204 (2004), 511-531.  doi: 10.1016/j.jde.2004.05.004.  Google Scholar

[47]

E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[48]

S. M. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133. Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203492222.  Google Scholar

[1]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[2]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[3]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[4]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[5]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[6]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[7]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[8]

Kenji Kimura, Yeong-Cheng Liou, Soon-Yi Wu, Jen-Chih Yao. Well-posedness for parametric vector equilibrium problems with applications. Journal of Industrial & Management Optimization, 2008, 4 (2) : 313-327. doi: 10.3934/jimo.2008.4.313

[9]

Nan-Jing Huang, Xian-Jun Long, Chang-Wen Zhao. Well-Posedness for vector quasi-equilibrium problems with applications. Journal of Industrial & Management Optimization, 2009, 5 (2) : 341-349. doi: 10.3934/jimo.2009.5.341

[10]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[11]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[12]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[13]

Qi Wang, Ling Jin, Zengyan Zhang. Global well-posedness, pattern formation and spiky stationary solutions in a Beddington–DeAngelis competition system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2105-2134. doi: 10.3934/dcds.2020108

[14]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[15]

Bilal Al Taki. Global well posedness for the ghost effect system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 345-368. doi: 10.3934/cpaa.2017017

[16]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[17]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[18]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[19]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[20]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (62)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]