March  2020, 40(3): 1889-1902. doi: 10.3934/dcds.2020098

Long-time behavior for a class of weighted equations with degeneracy

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

Received  July 2019 Published  December 2019

In this paper we study the existence and some properties of the global attractors for a class of weighted equations when the weighted Sobolev space $ H_0^{1,a}(\Omega) $ (see Definition 1.1) cannot be bounded embedded into $ L^2(\Omega) $. We claim that the dimension of the global attractor is infinite by estimating its lower bound of $ Z_2 $-index. Moreover, we prove that there is an infinite sequence of stationary points in the global attractor which goes to 0 and the corresponding critical value sequence of the Lyapunov functional also goes to 0.

Citation: Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098
References:
[1]

C. T. Anh and P. Q. Hung, Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231. 

[2]

C. T. AnhN. M. Chuong and T. D. Ke, Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.  doi: 10.1016/j.jmaa.2009.09.034.

[3]

C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.  doi: 10.1016/j.na.2009.02.125.

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992.

[5]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[6]

M. Efendiev and S. Zelik, Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.  doi: 10.1112/plms/pdm026.

[7]

M. A. Efendiev and M. Ôtani, Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.  doi: 10.1016/j.anihpc.2011.03.006.

[8]

M. EfendievA. Miranville and S. Zelik, Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.  doi: 10.1098/rspa.2003.1182.

[9]

M. Efendiev, Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.  doi: 10.1002/mma.1412.

[10]

J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984. doi: 10.1007/0-387-22896-9_9.

[11]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.  doi: 10.1088/0951-7715/12/5/303.

[12]

N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.  doi: 10.1007/s00033-004-2045-z.

[13]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.  doi: 10.1007/s00526-005-0347-4.

[14]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768. doi: 10.1016/j.na.2005.03.022.

[15]

F. LiB. You and C. K. Zhong, Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.  doi: 10.1080/00036811.2017.1322199.

[16]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.  doi: 10.1088/0951-7715/20/8/001.

[17]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[18]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[19]

B. YouF. Li and C. K. Zhong, The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.  doi: 10.1016/j.jmaa.2014.03.089.

[20]

J. ZhangC. K. Zhong and B. You, The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.  doi: 10.1016/j.nonrwa.2017.01.002.

[21]

C. K. Zhong and W. S. Niu, On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.  doi: 10.1016/j.na.2010.07.022.

[22]

C. K. ZhongB. You and R. Yang, The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.  doi: 10.1016/j.nonrwa.2014.02.008.

show all references

References:
[1]

C. T. Anh and P. Q. Hung, Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231. 

[2]

C. T. AnhN. M. Chuong and T. D. Ke, Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.  doi: 10.1016/j.jmaa.2009.09.034.

[3]

C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.  doi: 10.1016/j.na.2009.02.125.

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992.

[5]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[6]

M. Efendiev and S. Zelik, Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.  doi: 10.1112/plms/pdm026.

[7]

M. A. Efendiev and M. Ôtani, Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.  doi: 10.1016/j.anihpc.2011.03.006.

[8]

M. EfendievA. Miranville and S. Zelik, Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.  doi: 10.1098/rspa.2003.1182.

[9]

M. Efendiev, Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.  doi: 10.1002/mma.1412.

[10]

J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984. doi: 10.1007/0-387-22896-9_9.

[11]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.  doi: 10.1088/0951-7715/12/5/303.

[12]

N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.  doi: 10.1007/s00033-004-2045-z.

[13]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.  doi: 10.1007/s00526-005-0347-4.

[14]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768. doi: 10.1016/j.na.2005.03.022.

[15]

F. LiB. You and C. K. Zhong, Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.  doi: 10.1080/00036811.2017.1322199.

[16]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.  doi: 10.1088/0951-7715/20/8/001.

[17]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[18]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[19]

B. YouF. Li and C. K. Zhong, The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.  doi: 10.1016/j.jmaa.2014.03.089.

[20]

J. ZhangC. K. Zhong and B. You, The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.  doi: 10.1016/j.nonrwa.2017.01.002.

[21]

C. K. Zhong and W. S. Niu, On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.  doi: 10.1016/j.na.2010.07.022.

[22]

C. K. ZhongB. You and R. Yang, The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.  doi: 10.1016/j.nonrwa.2014.02.008.

[1]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[2]

Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111

[3]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[4]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[5]

Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685

[6]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093

[7]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[8]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[9]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[10]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[11]

Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152

[12]

Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117

[13]

Francesco Grotto, Umberto Pappalettera. Gaussian invariant measures and stationary solutions of 2D primitive equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2683-2699. doi: 10.3934/dcdsb.2021154

[14]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[15]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[16]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[17]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[18]

Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171

[19]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[20]

J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (342)
  • HTML views (121)
  • Cited by (0)

Other articles
by authors

[Back to Top]