-
Previous Article
Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport
- DCDS Home
- This Issue
-
Next Article
Minimality and stable Bernoulliness in dimension 3
Long-time behavior for a class of weighted equations with degeneracy
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China |
In this paper we study the existence and some properties of the global attractors for a class of weighted equations when the weighted Sobolev space $ H_0^{1,a}(\Omega) $ (see Definition 1.1) cannot be bounded embedded into $ L^2(\Omega) $. We claim that the dimension of the global attractor is infinite by estimating its lower bound of $ Z_2 $-index. Moreover, we prove that there is an infinite sequence of stationary points in the global attractor which goes to 0 and the corresponding critical value sequence of the Lyapunov functional also goes to 0.
References:
[1] |
C. T. Anh and P. Q. Hung,
Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231.
|
[2] |
C. T. Anh, N. M. Chuong and T. D. Ke,
Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.
doi: 10.1016/j.jmaa.2009.09.034. |
[3] |
C. T. Anh and T. D. Ke,
Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.
doi: 10.1016/j.na.2009.02.125. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992. |
[5] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[6] |
M. Efendiev and S. Zelik,
Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.
doi: 10.1112/plms/pdm026. |
[7] |
M. A. Efendiev and M. Ôtani,
Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.
doi: 10.1016/j.anihpc.2011.03.006. |
[8] |
M. Efendiev, A. Miranville and S. Zelik,
Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.
doi: 10.1098/rspa.2003.1182. |
[9] |
M. Efendiev,
Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.
doi: 10.1002/mma.1412. |
[10] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984.
doi: 10.1007/0-387-22896-9_9. |
[11] |
B. R. Hunt and V. Y. Kaloshin,
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.
doi: 10.1088/0951-7715/12/5/303. |
[12] |
N. I. Karachalios and N. B. Zographopoulos,
Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.
doi: 10.1007/s00033-004-2045-z. |
[13] |
N. I. Karachalios and N. B. Zographopoulos,
On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.
doi: 10.1007/s00526-005-0347-4. |
[14] |
N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768.
doi: 10.1016/j.na.2005.03.022. |
[15] |
F. Li, B. You and C. K. Zhong,
Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.
doi: 10.1080/00036811.2017.1322199. |
[16] |
A. Miranville and S. Zelik,
Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: 10.1088/0951-7715/20/8/001. |
[17] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[18] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[19] |
B. You, F. Li and C. K. Zhong,
The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.
doi: 10.1016/j.jmaa.2014.03.089. |
[20] |
J. Zhang, C. K. Zhong and B. You,
The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.
doi: 10.1016/j.nonrwa.2017.01.002. |
[21] |
C. K. Zhong and W. S. Niu,
On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.
doi: 10.1016/j.na.2010.07.022. |
[22] |
C. K. Zhong, B. You and R. Yang,
The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.
doi: 10.1016/j.nonrwa.2014.02.008. |
show all references
References:
[1] |
C. T. Anh and P. Q. Hung,
Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231.
|
[2] |
C. T. Anh, N. M. Chuong and T. D. Ke,
Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.
doi: 10.1016/j.jmaa.2009.09.034. |
[3] |
C. T. Anh and T. D. Ke,
Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.
doi: 10.1016/j.na.2009.02.125. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992. |
[5] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[6] |
M. Efendiev and S. Zelik,
Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.
doi: 10.1112/plms/pdm026. |
[7] |
M. A. Efendiev and M. Ôtani,
Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.
doi: 10.1016/j.anihpc.2011.03.006. |
[8] |
M. Efendiev, A. Miranville and S. Zelik,
Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.
doi: 10.1098/rspa.2003.1182. |
[9] |
M. Efendiev,
Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.
doi: 10.1002/mma.1412. |
[10] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984.
doi: 10.1007/0-387-22896-9_9. |
[11] |
B. R. Hunt and V. Y. Kaloshin,
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.
doi: 10.1088/0951-7715/12/5/303. |
[12] |
N. I. Karachalios and N. B. Zographopoulos,
Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.
doi: 10.1007/s00033-004-2045-z. |
[13] |
N. I. Karachalios and N. B. Zographopoulos,
On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.
doi: 10.1007/s00526-005-0347-4. |
[14] |
N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768.
doi: 10.1016/j.na.2005.03.022. |
[15] |
F. Li, B. You and C. K. Zhong,
Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.
doi: 10.1080/00036811.2017.1322199. |
[16] |
A. Miranville and S. Zelik,
Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: 10.1088/0951-7715/20/8/001. |
[17] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[18] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[19] |
B. You, F. Li and C. K. Zhong,
The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.
doi: 10.1016/j.jmaa.2014.03.089. |
[20] |
J. Zhang, C. K. Zhong and B. You,
The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.
doi: 10.1016/j.nonrwa.2017.01.002. |
[21] |
C. K. Zhong and W. S. Niu,
On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.
doi: 10.1016/j.na.2010.07.022. |
[22] |
C. K. Zhong, B. You and R. Yang,
The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.
doi: 10.1016/j.nonrwa.2014.02.008. |
[1] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[2] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[3] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[4] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[5] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[6] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[7] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[8] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[9] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[10] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[11] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[12] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[13] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[14] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[15] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[16] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[17] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[18] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[19] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[20] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]