\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport

  • * Corresponding author: Youde Wang

    * Corresponding author: Youde Wang

The authors are supported by NSFC grant No.11731001

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the Landau-Lifshitz-Gilbert systems with spin-polarized transport from a bounded domain in $ \mathbb{R}^3 $ into $ S^2 $ and show the existence of global weak solutions to the Cauchy problems of such Landau-Lifshtiz systems. In particular, we show that the Cauchy problem to Landau-Lifshitz equation without damping but with diffusion process of the spin accumulation admits a global weak solution. The Landau-Lifshtiz system with spin-polarized transport into a compact Lie algebra is also discussed and some similar results are proved. The key ingredients of this article consist of the choices of test functions and approximate equations.

    Mathematics Subject Classification: 35D30, 35G20, 35G25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
    [2] F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.
    [3] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125. Springer-Verlag, New York, 1998.
    [4] R. Balakrishnan, On the inhomogeneous Heisenberg chain, Journal of Physics C: Solid State Physics, 15 (1982), 1305-1308.  doi: 10.1088/0022-3719/15/36/007.
    [5] X. ChenR. Q. Jiang and Y. D. Wang, A class of periodic solutions of one-dimensional Landau-Lifshitz equations, J. Math. Study, 50 (2017), 199-214.  doi: 10.4208/jms.v50n3.17.01.
    [6] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differential Integral Equations, 14 (2001), 213-229. 
    [7] G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.
    [8] M. DanielK. Porsezian and M. Lakshmanan, On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimensions, Journal of Mathematical Physics, 35 (1994), 6498-6510.  doi: 10.1063/1.530687.
    [9] S. J. Ding and B. L. Guo, Existence of partially regular weak solutions to Landau-Lifshitz-Maxwell equations, J. Differential Equations, 244 (2008), 2448-2472.  doi: 10.1016/j.jde.2008.02.029.
    [10] S. J. DingX. G. Liu and C. Y. Wang, The Landau-Lifshitz-Maxwell equation in dimension three, Pacific J. Math, 243 (2009), 243-276.  doi: 10.2140/pjm.2009.243.243.
    [11] W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.
    [12] W. Y. DingH. Y. Wang and Y. D. Wang, Schrödinger flows on compact Hermitian symmetric spaces and related problems, Acta Math. Sin. (Engl. Ser.), 7 (2018), 513-522.  doi: 10.1142/9789813220881_0042.
    [13] C. J. Garcia-Cervera and X.-P. Wang, Spin-polarized transport: Existence of weak solutions, Discre. Contin. Dynam. Syst. Series B, 7 (2007), 87-100.  doi: 10.3934/dcdsb.2007.7.87.
    [14] C. J. Garcia-Cervera and X.-P. Wang, A note on 'Spin-polarized transport: Existence of weak solutions', Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2761-2763.  doi: 10.3934/dcdsb.2015.20.2761.
    [15] K. Gärtner and A. Glitzky, Existence of bounded steady state solutions to spin-polarized drift-diffusion systems, SIAM J. Math. Anal., 41 (2009/10), 2489-2513.  doi: 10.1137/080736454.
    [16] T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255. 
    [17] A. Glitzky, Analysis of a spin-polarized drift-diffusion model, Adv. Math. Sci. Appl., 18 (2008), 401-427. 
    [18] R. El Hajj, Diffusion models for spin transport derived from the spinor Boltzmann equation, Commun. Math. Sci., 12 (2014), 565-592.  doi: 10.4310/CMS.2014.v12.n3.a9.
    [19] Z. L. Jia and Y. D. Wang, Local nonautonomous Schrödinger flows on Kähler manifolds, Acta Mathematica Sinica, English Series, 35 (2019), 1251-1299.  doi: 10.1007/s10114-019-8303-y.
    [20] Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Acta Mathematica Sinica, English Series, 35 (2019), 1251–1299, arXiv: math/1802.00135.
    [21] J. L. JolyG. Métivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré, 1 (2000), 307-340.  doi: 10.1007/PL00001007.
    [22] O. A. Ladyzhenskaya, The Boundary Value Problem of Mathematical Physics, Applied Mathematical Sciences, 49. Springer-Verlag, New York, 1985. doi: 10.1063/1.3048363.
    [23] L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.  doi: 10.1016/B978-0-08-010523-9.50018-3.
    [24] C. Melcher, Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions, Indiana Univ. Math. J., 61 (2012), 1175-1200.  doi: 10.1512/iumj.2012.61.4717.
    [25] S. Possanner and C. Negulescu, Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport, Kinet. Relat. Models, 4 (2011), 1159-1191.  doi: 10.3934/krm.2011.4.1159.
    [26] X. K. PuM. Wang and W. D. Wang, The Landau-Lifshitz equation of the ferromagnetic spin chain and Oseen-Frank flow, SIAM J. Math. Anal., 49 (2017), 5134-5157.  doi: 10.1137/16M1094907.
    [27] X. K. Pu and W. D. Wang, Partial regularity to the Landau-Lifshitz equation with spin accumulation, J. Differential Equations, 268 (2020), 707–737, arXiv: math/1808.01798. doi: 10.1016/j.jde.2019.08.034.
    [28] A. Shpiro, P. M. Levy and S. F. Zhang, Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers, Phys. Rev. B, 67 (2003), 104430. doi: 10.1103/PhysRevB.67.104430.
    [29] M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.
    [30] A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.
    [31] M. WangNonlinear Elliptic Equations, Science Press, Beijing, 2010. 
    [32] C. Y. Wang, On Landau-Lifshitz equation in dimensions at most four, Indiana Univ. Math. J., 55 (2006), 1615-1644.  doi: 10.1512/iumj.2006.55.2810.
    [33] Y.-D. Wang, Heisenberg chain systems from compact manifolds into $S^2$, J. Math. Phys., 39 (1998), 363-371.  doi: 10.1063/1.532335.
    [34] W. XiangZ. Hou and  D. MengLectures of Lie Group, Higher Education Press, Beijing, 2014. 
    [35] N. Zamponi, Analysis of a drift-diffusion model with velocity saturation for spin-polarized transport in semiconductors, J. Math. Anal. Appl., 420 (2014), 1167-1181.  doi: 10.1016/j.jmaa.2014.06.065.
    [36] N. Zamponi and A. Jüngel, Analysis of a coupled spin drift-diffusion Maxwell-Landau-Lifshitz system, J. Differential Equations, 260 (2016), 6828-6854.  doi: 10.1016/j.jde.2016.01.010.
    [37] S. Zhang, P. M. Levy and A. Fert, Mechanisms of spin-polarized current-driven magnetication switching, Phys. Rev. Lett., 88 (2002), 236601. doi: 10.1103/PhysRevLett.88.236601.
  • 加载中
SHARE

Article Metrics

HTML views(163) PDF downloads(309) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return