March  2020, 40(3): 1937-1961. doi: 10.3934/dcds.2020100

Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities

1. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

2. 

Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos SP, Brazil

3. 

Departamento de Ciências, Campus Regional de Goioerê, Universidade Estadual de Maringá, 87360-000, Goioerê, PR, Brazil

* Corresponding author: Marcelo J. D. Nascimento

Received  July 2019 Revised  October 2019 Published  December 2019

Fund Project: The first author is partially supported by the Key Project of Science and Technology of Henan Province (Grant No. 182102410069) and the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039)
The second author is partially supported by FAPESP grant # 2017/06582-2, Brazil.

This paper is concerned with the long-time behavior for a class of non-autonomous plate equations with perturbation and strong damping of
$ p $
-Laplacian type
$ u_{tt} + \Delta^2 u + a_{\epsilon}(t) u_t - \Delta_p u - \Delta u_t + f(u) = g(x,t), $
in bounded domain
$ \Omega\subset \mathbb{R}^N $
with smooth boundary and critical nonlinear terms. The global existence of weak solution which generates a continuous process has been presented firstly, then the existence of strong and weak uniform attractors with non-compact external forces also derived. Moreover, the upper-semicontinuity of uniform attractors under small perturbations has also obtained by delicate estimate and contradiction argument.
Citation: Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

D. AndradeM. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with $p$-Laplacian and memory terms, Math. Meth. Appl. Sci., 35 (2012), 417-426.  doi: 10.1002/mma.1552.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium publications, 49. American Mathematical Society, Providence, 2002.  Google Scholar

[5]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weakly solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[8]

B. W. FengX.-G. Yang and Y. M. Qin, Uniform attractors for a nonautonomous extensible plate equation with a strong damping, Math. Meth. Appl. Sci., 40 (2017), 3479-3492.  doi: 10.1002/mma.4239.  Google Scholar

[9]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées, 17. Masson, Paris, 1991.  Google Scholar

[10]

M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130-1146.  doi: 10.1093/imamat/hxs011.  Google Scholar

[11]

M. A. Jorge Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 54 (2013), 021505, 15 pp. doi: 10.1063/1.4792606.  Google Scholar

[12]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[13]

J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640.  Google Scholar

[14]

S. S. Lu, Attractors for non-autonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[15]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for non-autonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[16]

S. S. Lu, Attractors for non-autonomous reactive-diffusion systems with symbols without strong translation compactness, Asymptot. Anal., 54 (2007), 197-210.   Google Scholar

[17]

S. MaC. K. Zhong and H. T. Song, Attractors for non-autonomous 2D Navier-Stokes equations with less regular symbols, Nonlinear Anal., 71 (2009), 4215-4222.  doi: 10.1016/j.na.2009.02.107.  Google Scholar

[18]

S. MaX. Y. Cheng and H. T. Li, Attractors for non-autonomous wave equations with a new class of external forces, J. Math. Anal. Appl., 337 (2008), 808-820.  doi: 10.1016/j.jmaa.2007.03.108.  Google Scholar

[19]

S. Ma and C. K. Zhong, The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces, Discrete Contin. Dyn. Syst., 18 (2007), 53-70.  doi: 10.3934/dcds.2007.18.53.  Google Scholar

[20]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with $p$-Laplacian, Discrete Contin. Dyn. Syst. Suppl., (2013), 525–534. doi: 10.3934/proc.2013.2013.525.  Google Scholar

[21]

C. Y. SunD. M. Cao and J. Q. Duan, Uniform attractors for non-autonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[22]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[23]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

[24]

Z. J. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.  doi: 10.1016/S0022-0396(02)00042-6.  Google Scholar

[25]

Z. J. Yang, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Meth. Appl. Sci., 32 (2009), 1082-1104.  doi: 10.1002/mma.1080.  Google Scholar

[26]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Math. Phys., 53 (2012), 032702, 15 pp. doi: 10.1063/1.3694730.  Google Scholar

[27]

Z. J. Yang and B. Jin, Global attractor for a class of Kirchhoff models, J. Math. Phys., 50 (2009), 032701, 29 pp. Google Scholar

[28]

S. Zelik, Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external force, Discrete Contin. Dyn. Syst., 20 (2015), 781-810.  doi: 10.3934/dcdsb.2015.20.781.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

D. AndradeM. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with $p$-Laplacian and memory terms, Math. Meth. Appl. Sci., 35 (2012), 417-426.  doi: 10.1002/mma.1552.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium publications, 49. American Mathematical Society, Providence, 2002.  Google Scholar

[5]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weakly solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.  doi: 10.3934/dcds.2006.15.777.  Google Scholar

[8]

B. W. FengX.-G. Yang and Y. M. Qin, Uniform attractors for a nonautonomous extensible plate equation with a strong damping, Math. Meth. Appl. Sci., 40 (2017), 3479-3492.  doi: 10.1002/mma.4239.  Google Scholar

[9]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées, 17. Masson, Paris, 1991.  Google Scholar

[10]

M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130-1146.  doi: 10.1093/imamat/hxs011.  Google Scholar

[11]

M. A. Jorge Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 54 (2013), 021505, 15 pp. doi: 10.1063/1.4792606.  Google Scholar

[12]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[13]

J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640.  Google Scholar

[14]

S. S. Lu, Attractors for non-autonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[15]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for non-autonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[16]

S. S. Lu, Attractors for non-autonomous reactive-diffusion systems with symbols without strong translation compactness, Asymptot. Anal., 54 (2007), 197-210.   Google Scholar

[17]

S. MaC. K. Zhong and H. T. Song, Attractors for non-autonomous 2D Navier-Stokes equations with less regular symbols, Nonlinear Anal., 71 (2009), 4215-4222.  doi: 10.1016/j.na.2009.02.107.  Google Scholar

[18]

S. MaX. Y. Cheng and H. T. Li, Attractors for non-autonomous wave equations with a new class of external forces, J. Math. Anal. Appl., 337 (2008), 808-820.  doi: 10.1016/j.jmaa.2007.03.108.  Google Scholar

[19]

S. Ma and C. K. Zhong, The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces, Discrete Contin. Dyn. Syst., 18 (2007), 53-70.  doi: 10.3934/dcds.2007.18.53.  Google Scholar

[20]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with $p$-Laplacian, Discrete Contin. Dyn. Syst. Suppl., (2013), 525–534. doi: 10.3934/proc.2013.2013.525.  Google Scholar

[21]

C. Y. SunD. M. Cao and J. Q. Duan, Uniform attractors for non-autonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[22]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[23]

X. G. YangZ. H. Fan and K. Li, Uniform attractor for non-autonomous Boussinesq-type equation with critical nonlinearity, Math. Meth. Appl. Sci., 39 (2016), 3075-3087.  doi: 10.1002/mma.3753.  Google Scholar

[24]

Z. J. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.  doi: 10.1016/S0022-0396(02)00042-6.  Google Scholar

[25]

Z. J. Yang, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Meth. Appl. Sci., 32 (2009), 1082-1104.  doi: 10.1002/mma.1080.  Google Scholar

[26]

Z. J. Yang, Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Math. Phys., 53 (2012), 032702, 15 pp. doi: 10.1063/1.3694730.  Google Scholar

[27]

Z. J. Yang and B. Jin, Global attractor for a class of Kirchhoff models, J. Math. Phys., 50 (2009), 032701, 29 pp. Google Scholar

[28]

S. Zelik, Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external force, Discrete Contin. Dyn. Syst., 20 (2015), 781-810.  doi: 10.3934/dcdsb.2015.20.781.  Google Scholar

[1]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[2]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[5]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[6]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[7]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[8]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[9]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[10]

Pablo G. Barrientos, Abbas Fakhari. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1361-1382. doi: 10.3934/dcdsb.2019231

[11]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[12]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[13]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[14]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[15]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221

[16]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[17]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[18]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[19]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[20]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (96)
  • HTML views (56)
  • Cited by (0)

[Back to Top]