April  2020, 40(4): 2037-2060. doi: 10.3934/dcds.2020105

Emergent dynamics of an orientation flocking model for multi-agent system

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea

3. 

National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon 34047, Republic of Korea

4. 

The Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea

5. 

Department of Mathematics, Myongji University, 116 Myongjiro, Yong-In 17058, Republic of Korea

* Corresponding author: Se Eun Noh

Received  October 2018 Revised  September 2019 Published  January 2020

Fund Project: The work of S.-Y. Ha was supported by the National Research Foundation of Korea (NRF-2017R1A5A1015626), the work of D. Kim was supported from the National Institute for Mathematical Sciences (NIMS) grant funded by the Korea government (MIST) (No.B19610000), and the work of S. E. Noh was supported by the National Research Foundation of Korea (NRF-2017R1C1B5018312).

We study the orientation flocking for the deterministic counterpart of a stochastic agent-based model introduced by Degond, Frouvelle and Merino-Aceituno in 2017, where the orientation is defined as a $ {\rm SO}(3) $ matrix. Their proposed model can be reduced to the other collective dynamics models such as the Lohe matrix model and the Viscek-type model as special cases. In this work, we study the emergent dynamics of the orientation flocking model in two frameworks. First, we present sufficient conditions leading to the orientation flocking when the natural frequency matrices are identical. To be precise, we prove that all orientation matrices asymptotically converge to the common one, and the spatial position diameter remains uniformly bounded. Second, we show the emergence of orientation-locked states for non-identical natural frequency matrices, that is, the difference of any two orientation matrices tends to the definite constant matrix. On the other hand, we establish the finite-in-time stability with respect to initial data of the proposed orientation flocking model. We also present the numerical results consistent with our rigorous analysis. Our work remains valid even for dimensions greater than three.

Citation: Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105
References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[4]

J. C. Bronski, L. DeVille and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17 pp. doi: 10.1063/1.4745197.  Google Scholar

[5]

S. Chandra, M. Girvan and E. Ott, Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model, Chaos, 29 (2019), 053107, 8 pp. doi: 10.1063/1.5093038.  Google Scholar

[6]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.  Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953-972.  doi: 10.4310/CMS.2016.v14.n4.a4.  Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

P. DegondA. Frouvelle and S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 27 (2017), 1005-1049.  doi: 10.1142/S0218202517400085.  Google Scholar

[12]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.  Google Scholar

[13]

L. DeVille, Synchronization and stability for quantum kuramoto, J. Stat. Phys., 174 (2019), 160-187.  doi: 10.1007/s10955-018-2168-9.  Google Scholar

[14]

J.-G. Dong and X. P. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[15]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[16]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[18]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.  Google Scholar

[19]

S.-Y. HaM.-J. Kang and E. Jeong, Emergent behaviour of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.  doi: 10.1088/0951-7715/23/12/008.  Google Scholar

[20]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[21]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.  Google Scholar

[22]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[23]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling strength, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.   Google Scholar

[24]

S.-Y. HaD. Ko and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168 (2017), 171-207.  doi: 10.1007/s10955-017-1797-8.  Google Scholar

[25]

S.-Y. HaD. Ko and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys., 172 (2018), 1427-1478.  doi: 10.1007/s10955-018-2091-0.  Google Scholar

[26]

S.-Y. HaD. Ko and Y. L. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763-2793.  doi: 10.3934/dcds.2018116.  Google Scholar

[27]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[28]

S.-Y. HaZ. C. Li and X. P. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[29]

S.-Y. Ha and S. W. Ryoo, On the emergence and orbital stability of phase-locked states for the Lohe model, J. Stat. Phys., 163 (2016), 411-439.  doi: 10.1007/s10955-016-1481-4.  Google Scholar

[30]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[31]

Y. Kuramoto, Self-entrainment of population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., Springer, Berlin, 39 (1975), 420-422.   Google Scholar

[32]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[33]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060–5066. doi: 10.1109/CDC.2006.376811.  Google Scholar

[34] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[35]

A. SarletteR. Sepulchre and N. E. Leonard, Autonomous rigid body attitude synchronization, Automatica, 45 (2009), 572-577.   Google Scholar

[36]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D., 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[37]

R. Tron, B. Afsari and R. Vidal, Intrinsic consensus on SO(3) with almost-global convergence, 2012 IEEE Conference on Decision and Control, (2012), 2052–2058. doi: 10.1109/CDC.2012.6426677.  Google Scholar

[38]

T. VicsekA. CzirókE. Ben-JacobI. CohenI and O. Shochet, Novel type of phase transition in a system of self-drivenparticles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[4]

J. C. Bronski, L. DeVille and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17 pp. doi: 10.1063/1.4745197.  Google Scholar

[5]

S. Chandra, M. Girvan and E. Ott, Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model, Chaos, 29 (2019), 053107, 8 pp. doi: 10.1063/1.5093038.  Google Scholar

[6]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.  Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953-972.  doi: 10.4310/CMS.2016.v14.n4.a4.  Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

P. DegondA. Frouvelle and S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 27 (2017), 1005-1049.  doi: 10.1142/S0218202517400085.  Google Scholar

[12]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.  Google Scholar

[13]

L. DeVille, Synchronization and stability for quantum kuramoto, J. Stat. Phys., 174 (2019), 160-187.  doi: 10.1007/s10955-018-2168-9.  Google Scholar

[14]

J.-G. Dong and X. P. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[15]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[16]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[18]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.  Google Scholar

[19]

S.-Y. HaM.-J. Kang and E. Jeong, Emergent behaviour of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.  doi: 10.1088/0951-7715/23/12/008.  Google Scholar

[20]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[21]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.  Google Scholar

[22]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[23]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling strength, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.   Google Scholar

[24]

S.-Y. HaD. Ko and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168 (2017), 171-207.  doi: 10.1007/s10955-017-1797-8.  Google Scholar

[25]

S.-Y. HaD. Ko and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys., 172 (2018), 1427-1478.  doi: 10.1007/s10955-018-2091-0.  Google Scholar

[26]

S.-Y. HaD. Ko and Y. L. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763-2793.  doi: 10.3934/dcds.2018116.  Google Scholar

[27]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[28]

S.-Y. HaZ. C. Li and X. P. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[29]

S.-Y. Ha and S. W. Ryoo, On the emergence and orbital stability of phase-locked states for the Lohe model, J. Stat. Phys., 163 (2016), 411-439.  doi: 10.1007/s10955-016-1481-4.  Google Scholar

[30]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[31]

Y. Kuramoto, Self-entrainment of population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., Springer, Berlin, 39 (1975), 420-422.   Google Scholar

[32]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[33]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060–5066. doi: 10.1109/CDC.2006.376811.  Google Scholar

[34] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[35]

A. SarletteR. Sepulchre and N. E. Leonard, Autonomous rigid body attitude synchronization, Automatica, 45 (2009), 572-577.   Google Scholar

[36]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D., 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[37]

R. Tron, B. Afsari and R. Vidal, Intrinsic consensus on SO(3) with almost-global convergence, 2012 IEEE Conference on Decision and Control, (2012), 2052–2058. doi: 10.1109/CDC.2012.6426677.  Google Scholar

[38]

T. VicsekA. CzirókE. Ben-JacobI. CohenI and O. Shochet, Novel type of phase transition in a system of self-drivenparticles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

Figure 1.  Identical case: $ H_i \equiv H $
Figure 2.  Non-identical case
[1]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[2]

Hyungjin Huh. Remarks on the Schrödinger-Lohe model. Networks & Heterogeneous Media, 2019, 14 (4) : 759-769. doi: 10.3934/nhm.2019030

[3]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[4]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094

[5]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[6]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[7]

Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences & Engineering, 2013, 10 (1) : 167-184. doi: 10.3934/mbe.2013.10.167

[8]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[9]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[10]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[11]

Julie Joie, Yifeng Lei, Marie-Christine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1059-1076. doi: 10.3934/dcdsb.2015.20.1059

[12]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[13]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[14]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[15]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[16]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic & Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[17]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047

[18]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

[19]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[20]

Tone Arnold, Myrna Wooders. Dynamic club formation with coordination. Journal of Dynamics & Games, 2015, 2 (3&4) : 341-361. doi: 10.3934/jdg.2015010

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (133)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]