April  2020, 40(4): 2061-2087. doi: 10.3934/dcds.2020106

Global well-posedness of the free-interface incompressible Euler equations with damping

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

Received  December 2018 Revised  September 2019 Published  January 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 11771358).

We prove the global well-posedness of the free interface problem for the two-phase incompressible Euler Equations with damping for the small initial data, where the effect of surface tension is included on the free surfaces. Moreover, the solution decays exponentially to the equilibrium.

Citation: Jiali Lian. Global well-posedness of the free-interface incompressible Euler equations with damping. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2061-2087. doi: 10.3934/dcds.2020106
References:
[1]

D. M. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal., 35 (2003), 211-244.  doi: 10.1137/S0036141002403869.  Google Scholar

[2]

D. M. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., 5 (2007), 391-430.  doi: 10.4310/CMS.2007.v5.n2.a9.  Google Scholar

[3]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.  doi: 10.1137/0519099.  Google Scholar

[4]

J. T. Beale, Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1983/84), 307-252.  doi: 10.1007/BF00250586.  Google Scholar

[5]

R. E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.  doi: 10.1137/0520020.  Google Scholar

[6]

J. G. Charney, The Gulf Stream as an inertial boundary layer, Proc. Nat. Acad. Sci. USA, 41 (1955), 731-740.   Google Scholar

[7]

C.-H. A. ChengD. Coutand and S. Shkoller, On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752.  doi: 10.1002/cpa.20240.  Google Scholar

[8]

C.-H. A. ChengD. Coutand and S. Shkoller, On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity, Comm. Partial Differential Equations, 35 (2010), 817-845.  doi: 10.1080/03605300903503115.  Google Scholar

[9]

V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^2$, J. Math. Fluid Mech., 17 (2015), 513-532.  doi: 10.1007/s00021-015-0213-x.  Google Scholar

[10]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb{R}^2$, Comm. Math. Phys., 275 (2007), 529-551.  doi: 10.1007/s00220-007-0310-7.  Google Scholar

[11]

J.-F. Coulombel and P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J., 53 (2004), 941-1012.  doi: 10.1512/iumj.2004.53.2526.  Google Scholar

[12]

J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 85–139. doi: 10.24033/asens.2064.  Google Scholar

[13]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829-930.  doi: 10.1090/S0894-0347-07-00556-5.  Google Scholar

[14]

V. P. Dymnikov and A. N. Filatov, Mathematics of climate modelling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1997.  Google Scholar

[15]

D. G. Ebin, Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids, Comm. Partial Differential Equations, 13 (1988), 1265-1295.  doi: 10.1080/03605308808820576.  Google Scholar

[16]

G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04670-8.  Google Scholar

[17]

P. GermainN. Masmoudi and J. Shatah, Global solutions for capillary waves equation, Comm. Pure Appl. Math., 68 (2015), 625-487.  doi: 10.1002/cpa.21535.  Google Scholar

[18]

Y. Guo and I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688-1720.  doi: 10.1137/090777438.  Google Scholar

[19]

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6 (2013), 287-369.  doi: 10.2140/apde.2013.6.287.  Google Scholar

[20]

Y. Guo and I. Tice, Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Ration. Mech. Anal., 207 (2013), 459-531.  doi: 10.1007/s00205-012-0570-z.  Google Scholar

[21]

Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6 (2013), 1429-1533.  doi: 10.2140/apde.2013.6.1429.  Google Scholar

[22]

A. A. Ilyin, The Euler equations with dissipation, Mat. Sb., 182 (1991), 1729-1739.   Google Scholar

[23]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Local well-posedness, SIAM J. Math. Anal., 48 (2016), 2602-2673.  doi: 10.1137/15M1036026.  Google Scholar

[24]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Stability and vanishing surface tension limit, Comm. Math. Phys., 343 (2016), 1039-1113.  doi: 10.1007/s00220-016-2603-1.  Google Scholar

[25]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 221 (2016), 215-272.  doi: 10.1007/s00205-015-0960-0.  Google Scholar

[26]

R. H. Pan and K. Zhao, The 3D compressible Euler equations with damping in a bounded domain, J. Differential Equations, 246 (2009), 581-596.  doi: 10.1016/j.jde.2008.06.007.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1979. Google Scholar

[28]

F. Pusateri, On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 347-373.  doi: 10.1142/S021989161100241X.  Google Scholar

[29]

J.-C. Saut, Remarks on the damped stationary Euler equations, Differ. Integral Equ., 3 (1990), 801-812.   Google Scholar

[30]

J. Shatah and C. C. Zeng, A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.  doi: 10.1002/cpa.20241.  Google Scholar

[31]

J. Shatah and C. C. Zeng, Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., 199 (2011), 653-705.  doi: 10.1007/s00205-010-0335-5.  Google Scholar

[32]

T. C. SiderisB. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations, 28 (2003), 795-816.  doi: 10.1081/PDE-120020497.  Google Scholar

[33]

B. Stevens, Short-time structural stability of compressible vortex sheets with surface tension, Arch. Ration. Mech. Anal., 222 (2016), 603-730.  doi: 10.1007/s00205-016-1009-8.  Google Scholar

[34]

H. Stommel, The westward intensification of wind-driven ocean currents, Trans. Amer. Geophys. Union, 29 (1948), 202-206.  doi: 10.1029/TR029i002p00202.  Google Scholar

[35]

Y. J. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Comm. Partial Differential Equations, 37 (2012), 1967-2028.  doi: 10.1080/03605302.2012.699498.  Google Scholar

[36]

Y. J. WangI. Tice and C. Kim, The viscous surface-internal wave problem: Global well-posedness and decay, Arch. Rational Mech. Anal., 212 (2014), 1-92.  doi: 10.1007/s00205-013-0700-2.  Google Scholar

show all references

References:
[1]

D. M. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal., 35 (2003), 211-244.  doi: 10.1137/S0036141002403869.  Google Scholar

[2]

D. M. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., 5 (2007), 391-430.  doi: 10.4310/CMS.2007.v5.n2.a9.  Google Scholar

[3]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.  doi: 10.1137/0519099.  Google Scholar

[4]

J. T. Beale, Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1983/84), 307-252.  doi: 10.1007/BF00250586.  Google Scholar

[5]

R. E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.  doi: 10.1137/0520020.  Google Scholar

[6]

J. G. Charney, The Gulf Stream as an inertial boundary layer, Proc. Nat. Acad. Sci. USA, 41 (1955), 731-740.   Google Scholar

[7]

C.-H. A. ChengD. Coutand and S. Shkoller, On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752.  doi: 10.1002/cpa.20240.  Google Scholar

[8]

C.-H. A. ChengD. Coutand and S. Shkoller, On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity, Comm. Partial Differential Equations, 35 (2010), 817-845.  doi: 10.1080/03605300903503115.  Google Scholar

[9]

V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^2$, J. Math. Fluid Mech., 17 (2015), 513-532.  doi: 10.1007/s00021-015-0213-x.  Google Scholar

[10]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb{R}^2$, Comm. Math. Phys., 275 (2007), 529-551.  doi: 10.1007/s00220-007-0310-7.  Google Scholar

[11]

J.-F. Coulombel and P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J., 53 (2004), 941-1012.  doi: 10.1512/iumj.2004.53.2526.  Google Scholar

[12]

J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 85–139. doi: 10.24033/asens.2064.  Google Scholar

[13]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829-930.  doi: 10.1090/S0894-0347-07-00556-5.  Google Scholar

[14]

V. P. Dymnikov and A. N. Filatov, Mathematics of climate modelling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1997.  Google Scholar

[15]

D. G. Ebin, Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids, Comm. Partial Differential Equations, 13 (1988), 1265-1295.  doi: 10.1080/03605308808820576.  Google Scholar

[16]

G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04670-8.  Google Scholar

[17]

P. GermainN. Masmoudi and J. Shatah, Global solutions for capillary waves equation, Comm. Pure Appl. Math., 68 (2015), 625-487.  doi: 10.1002/cpa.21535.  Google Scholar

[18]

Y. Guo and I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688-1720.  doi: 10.1137/090777438.  Google Scholar

[19]

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6 (2013), 287-369.  doi: 10.2140/apde.2013.6.287.  Google Scholar

[20]

Y. Guo and I. Tice, Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Ration. Mech. Anal., 207 (2013), 459-531.  doi: 10.1007/s00205-012-0570-z.  Google Scholar

[21]

Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6 (2013), 1429-1533.  doi: 10.2140/apde.2013.6.1429.  Google Scholar

[22]

A. A. Ilyin, The Euler equations with dissipation, Mat. Sb., 182 (1991), 1729-1739.   Google Scholar

[23]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Local well-posedness, SIAM J. Math. Anal., 48 (2016), 2602-2673.  doi: 10.1137/15M1036026.  Google Scholar

[24]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Stability and vanishing surface tension limit, Comm. Math. Phys., 343 (2016), 1039-1113.  doi: 10.1007/s00220-016-2603-1.  Google Scholar

[25]

J. H. JangI. Tice and Y. J. Wang, The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 221 (2016), 215-272.  doi: 10.1007/s00205-015-0960-0.  Google Scholar

[26]

R. H. Pan and K. Zhao, The 3D compressible Euler equations with damping in a bounded domain, J. Differential Equations, 246 (2009), 581-596.  doi: 10.1016/j.jde.2008.06.007.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1979. Google Scholar

[28]

F. Pusateri, On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 347-373.  doi: 10.1142/S021989161100241X.  Google Scholar

[29]

J.-C. Saut, Remarks on the damped stationary Euler equations, Differ. Integral Equ., 3 (1990), 801-812.   Google Scholar

[30]

J. Shatah and C. C. Zeng, A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.  doi: 10.1002/cpa.20241.  Google Scholar

[31]

J. Shatah and C. C. Zeng, Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., 199 (2011), 653-705.  doi: 10.1007/s00205-010-0335-5.  Google Scholar

[32]

T. C. SiderisB. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations, 28 (2003), 795-816.  doi: 10.1081/PDE-120020497.  Google Scholar

[33]

B. Stevens, Short-time structural stability of compressible vortex sheets with surface tension, Arch. Ration. Mech. Anal., 222 (2016), 603-730.  doi: 10.1007/s00205-016-1009-8.  Google Scholar

[34]

H. Stommel, The westward intensification of wind-driven ocean currents, Trans. Amer. Geophys. Union, 29 (1948), 202-206.  doi: 10.1029/TR029i002p00202.  Google Scholar

[35]

Y. J. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Comm. Partial Differential Equations, 37 (2012), 1967-2028.  doi: 10.1080/03605302.2012.699498.  Google Scholar

[36]

Y. J. WangI. Tice and C. Kim, The viscous surface-internal wave problem: Global well-posedness and decay, Arch. Rational Mech. Anal., 212 (2014), 1-92.  doi: 10.1007/s00205-013-0700-2.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[10]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[11]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[12]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[13]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[14]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[15]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[16]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[17]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[18]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[19]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (174)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]