-
Previous Article
Quasi-shadowing for partially hyperbolic flows
- DCDS Home
- This Issue
-
Next Article
Emergent dynamics of an orientation flocking model for multi-agent system
Global well-posedness of the free-interface incompressible Euler equations with damping
School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China |
We prove the global well-posedness of the free interface problem for the two-phase incompressible Euler Equations with damping for the small initial data, where the effect of surface tension is included on the free surfaces. Moreover, the solution decays exponentially to the equilibrium.
References:
[1] |
D. M. Ambrose,
Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal., 35 (2003), 211-244.
doi: 10.1137/S0036141002403869. |
[2] |
D. M. Ambrose and N. Masmoudi,
Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., 5 (2007), 391-430.
doi: 10.4310/CMS.2007.v5.n2.a9. |
[3] |
V. Barcilon, P. Constantin and E. S. Titi,
Existence of solutions to the Stommel-Charney model of the gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.
doi: 10.1137/0519099. |
[4] |
J. T. Beale,
Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1983/84), 307-252.
doi: 10.1007/BF00250586. |
[5] |
R. E. Caflisch and O. F. Orellana,
Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.
doi: 10.1137/0520020. |
[6] |
J. G. Charney, The Gulf Stream as an inertial boundary layer, Proc. Nat. Acad. Sci. USA, 41 (1955), 731-740. Google Scholar |
[7] |
C.-H. A. Cheng, D. Coutand and S. Shkoller,
On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752.
doi: 10.1002/cpa.20240. |
[8] |
C.-H. A. Cheng, D. Coutand and S. Shkoller,
On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity, Comm. Partial Differential Equations, 35 (2010), 817-845.
doi: 10.1080/03605300903503115. |
[9] |
V. Chepyzhov and S. Zelik,
Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^2$, J. Math. Fluid Mech., 17 (2015), 513-532.
doi: 10.1007/s00021-015-0213-x. |
[10] |
P. Constantin and F. Ramos,
Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb{R}^2$, Comm. Math. Phys., 275 (2007), 529-551.
doi: 10.1007/s00220-007-0310-7. |
[11] |
J.-F. Coulombel and P. Secchi,
The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J., 53 (2004), 941-1012.
doi: 10.1512/iumj.2004.53.2526. |
[12] |
J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 85–139.
doi: 10.24033/asens.2064. |
[13] |
D. Coutand and S. Shkoller,
Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829-930.
doi: 10.1090/S0894-0347-07-00556-5. |
[14] |
V. P. Dymnikov and A. N. Filatov, Mathematics of climate modelling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1997. |
[15] |
D. G. Ebin,
Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids, Comm. Partial Differential Equations, 13 (1988), 1265-1295.
doi: 10.1080/03605308808820576. |
[16] |
G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04670-8. |
[17] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for capillary waves equation, Comm. Pure Appl. Math., 68 (2015), 625-487.
doi: 10.1002/cpa.21535. |
[18] |
Y. Guo and I. Tice,
Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688-1720.
doi: 10.1137/090777438. |
[19] |
Y. Guo and I. Tice,
Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6 (2013), 287-369.
doi: 10.2140/apde.2013.6.287. |
[20] |
Y. Guo and I. Tice,
Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Ration. Mech. Anal., 207 (2013), 459-531.
doi: 10.1007/s00205-012-0570-z. |
[21] |
Y. Guo and I. Tice,
Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6 (2013), 1429-1533.
doi: 10.2140/apde.2013.6.1429. |
[22] |
A. A. Ilyin, The Euler equations with dissipation, Mat. Sb., 182 (1991), 1729-1739. Google Scholar |
[23] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Local well-posedness, SIAM J. Math. Anal., 48 (2016), 2602-2673.
doi: 10.1137/15M1036026. |
[24] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Stability and vanishing surface tension limit, Comm. Math. Phys., 343 (2016), 1039-1113.
doi: 10.1007/s00220-016-2603-1. |
[25] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 221 (2016), 215-272.
doi: 10.1007/s00205-015-0960-0. |
[26] |
R. H. Pan and K. Zhao,
The 3D compressible Euler equations with damping in a bounded domain, J. Differential Equations, 246 (2009), 581-596.
doi: 10.1016/j.jde.2008.06.007. |
[27] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1979. Google Scholar |
[28] |
F. Pusateri,
On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 347-373.
doi: 10.1142/S021989161100241X. |
[29] |
J.-C. Saut,
Remarks on the damped stationary Euler equations, Differ. Integral Equ., 3 (1990), 801-812.
|
[30] |
J. Shatah and C. C. Zeng,
A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.
doi: 10.1002/cpa.20241. |
[31] |
J. Shatah and C. C. Zeng,
Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., 199 (2011), 653-705.
doi: 10.1007/s00205-010-0335-5. |
[32] |
T. C. Sideris, B. Thomases and D. H. Wang,
Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations, 28 (2003), 795-816.
doi: 10.1081/PDE-120020497. |
[33] |
B. Stevens,
Short-time structural stability of compressible vortex sheets with surface tension, Arch. Ration. Mech. Anal., 222 (2016), 603-730.
doi: 10.1007/s00205-016-1009-8. |
[34] |
H. Stommel,
The westward intensification of wind-driven ocean currents, Trans. Amer. Geophys. Union, 29 (1948), 202-206.
doi: 10.1029/TR029i002p00202. |
[35] |
Y. J. Wang and I. Tice,
The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Comm. Partial Differential Equations, 37 (2012), 1967-2028.
doi: 10.1080/03605302.2012.699498. |
[36] |
Y. J. Wang, I. Tice and C. Kim,
The viscous surface-internal wave problem: Global well-posedness and decay, Arch. Rational Mech. Anal., 212 (2014), 1-92.
doi: 10.1007/s00205-013-0700-2. |
show all references
References:
[1] |
D. M. Ambrose,
Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal., 35 (2003), 211-244.
doi: 10.1137/S0036141002403869. |
[2] |
D. M. Ambrose and N. Masmoudi,
Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., 5 (2007), 391-430.
doi: 10.4310/CMS.2007.v5.n2.a9. |
[3] |
V. Barcilon, P. Constantin and E. S. Titi,
Existence of solutions to the Stommel-Charney model of the gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.
doi: 10.1137/0519099. |
[4] |
J. T. Beale,
Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1983/84), 307-252.
doi: 10.1007/BF00250586. |
[5] |
R. E. Caflisch and O. F. Orellana,
Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.
doi: 10.1137/0520020. |
[6] |
J. G. Charney, The Gulf Stream as an inertial boundary layer, Proc. Nat. Acad. Sci. USA, 41 (1955), 731-740. Google Scholar |
[7] |
C.-H. A. Cheng, D. Coutand and S. Shkoller,
On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752.
doi: 10.1002/cpa.20240. |
[8] |
C.-H. A. Cheng, D. Coutand and S. Shkoller,
On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity, Comm. Partial Differential Equations, 35 (2010), 817-845.
doi: 10.1080/03605300903503115. |
[9] |
V. Chepyzhov and S. Zelik,
Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^2$, J. Math. Fluid Mech., 17 (2015), 513-532.
doi: 10.1007/s00021-015-0213-x. |
[10] |
P. Constantin and F. Ramos,
Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb{R}^2$, Comm. Math. Phys., 275 (2007), 529-551.
doi: 10.1007/s00220-007-0310-7. |
[11] |
J.-F. Coulombel and P. Secchi,
The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J., 53 (2004), 941-1012.
doi: 10.1512/iumj.2004.53.2526. |
[12] |
J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 85–139.
doi: 10.24033/asens.2064. |
[13] |
D. Coutand and S. Shkoller,
Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829-930.
doi: 10.1090/S0894-0347-07-00556-5. |
[14] |
V. P. Dymnikov and A. N. Filatov, Mathematics of climate modelling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1997. |
[15] |
D. G. Ebin,
Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids, Comm. Partial Differential Equations, 13 (1988), 1265-1295.
doi: 10.1080/03605308808820576. |
[16] |
G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04670-8. |
[17] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for capillary waves equation, Comm. Pure Appl. Math., 68 (2015), 625-487.
doi: 10.1002/cpa.21535. |
[18] |
Y. Guo and I. Tice,
Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688-1720.
doi: 10.1137/090777438. |
[19] |
Y. Guo and I. Tice,
Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6 (2013), 287-369.
doi: 10.2140/apde.2013.6.287. |
[20] |
Y. Guo and I. Tice,
Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Ration. Mech. Anal., 207 (2013), 459-531.
doi: 10.1007/s00205-012-0570-z. |
[21] |
Y. Guo and I. Tice,
Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6 (2013), 1429-1533.
doi: 10.2140/apde.2013.6.1429. |
[22] |
A. A. Ilyin, The Euler equations with dissipation, Mat. Sb., 182 (1991), 1729-1739. Google Scholar |
[23] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Local well-posedness, SIAM J. Math. Anal., 48 (2016), 2602-2673.
doi: 10.1137/15M1036026. |
[24] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Stability and vanishing surface tension limit, Comm. Math. Phys., 343 (2016), 1039-1113.
doi: 10.1007/s00220-016-2603-1. |
[25] |
J. H. Jang, I. Tice and Y. J. Wang,
The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 221 (2016), 215-272.
doi: 10.1007/s00205-015-0960-0. |
[26] |
R. H. Pan and K. Zhao,
The 3D compressible Euler equations with damping in a bounded domain, J. Differential Equations, 246 (2009), 581-596.
doi: 10.1016/j.jde.2008.06.007. |
[27] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1979. Google Scholar |
[28] |
F. Pusateri,
On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 347-373.
doi: 10.1142/S021989161100241X. |
[29] |
J.-C. Saut,
Remarks on the damped stationary Euler equations, Differ. Integral Equ., 3 (1990), 801-812.
|
[30] |
J. Shatah and C. C. Zeng,
A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.
doi: 10.1002/cpa.20241. |
[31] |
J. Shatah and C. C. Zeng,
Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., 199 (2011), 653-705.
doi: 10.1007/s00205-010-0335-5. |
[32] |
T. C. Sideris, B. Thomases and D. H. Wang,
Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations, 28 (2003), 795-816.
doi: 10.1081/PDE-120020497. |
[33] |
B. Stevens,
Short-time structural stability of compressible vortex sheets with surface tension, Arch. Ration. Mech. Anal., 222 (2016), 603-730.
doi: 10.1007/s00205-016-1009-8. |
[34] |
H. Stommel,
The westward intensification of wind-driven ocean currents, Trans. Amer. Geophys. Union, 29 (1948), 202-206.
doi: 10.1029/TR029i002p00202. |
[35] |
Y. J. Wang and I. Tice,
The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Comm. Partial Differential Equations, 37 (2012), 1967-2028.
doi: 10.1080/03605302.2012.699498. |
[36] |
Y. J. Wang, I. Tice and C. Kim,
The viscous surface-internal wave problem: Global well-posedness and decay, Arch. Rational Mech. Anal., 212 (2014), 1-92.
doi: 10.1007/s00205-013-0700-2. |
[1] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[2] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[3] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[4] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[5] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[6] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[7] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[8] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[9] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[10] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[11] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[12] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[13] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[14] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[15] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[16] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[17] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[18] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[19] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[20] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]