-
Previous Article
Global well-posedness, pattern formation and spiky stationary solutions in a Beddington–DeAngelis competition system
- DCDS Home
- This Issue
-
Next Article
Global well-posedness of the free-interface incompressible Euler equations with damping
Quasi-shadowing for partially hyperbolic flows
College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
In this paper, we study the quasi-shadowing property for partially hyperbolic flows. A partially hyperbolic flow $ \varphi_{t} $ has the quasi-shadowing property if for any $ (\delta,T) $-pseudoorbit $ g(t) $ of $ \varphi_{t} $ there exist a sequence of points $ \{y_{k}\}_{k\in\mathbb{Z}} $ and a reparametrization $ \alpha $ such that $ \varphi_{\alpha(t)-\alpha(kT)}(y_k) $ trace $ g(t) $ in which $ y_{k} $ is obtained from $ \varphi_{\alpha(kT)-\alpha((k-1)T)}(y_{k-1}) $ by a motion along the central direction. We prove that any partially hyperbolic flow $ \varphi_{t} $ has the quasi-shadowing property. We also investigate the limit quasi-shadowing properties for flows. That is, a partially hyperbolic flow has the $ \mathcal{L}^p $, limit and asymptotic quasi-shadowing properties.
References:
[1] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Pro. Steklov Inst. Math., 90 (1967), 209 pp. |
[2] |
D. Bohnet and C. Bonatti,
Partially hyperbolic diffeomorphisms with uniformly center foliation: The quotient dynamics, Ergod. Theory Dyn. Syst., 36 (20165), 1067-1105.
doi: 10.1017/etds.2014.102. |
[3] |
R. Bowen,
Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
R. Bowen,
Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[5] |
S. B. Gan,
A generalized shadowing lemma, Discrete Contin. Dyn. Syst., 8 (2002), 627-632.
doi: 10.3934/dcds.2002.8.627. |
[6] |
S. B. Gan and L. Wen,
Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[7] |
S. B. Gan and D. W. Yang,
Morse-Smale systems and horseshoes for three dimensional singular flows, Ann. Sci. Éc. Norm. Supér., 51 (2018), 39-112.
doi: 10.24033/asens.2351. |
[8] |
B. Han and X. Wen,
A shadowing lemma for quasi-hyperbolic strings of flows, J. Differential Equations, 264 (2018), 1-29.
doi: 10.1016/j.jde.2017.08.065. |
[9] |
S. Hayashi,
Connecting invariant manifolds and the solution of the $C^1$ stability conjecture and $\Omega$-stability conjecture for flows, Ann. Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[10] |
H. Y. Hu, Y. H. Zhou and Y. J. Zhu,
Quasi-shadowing for partially hyperbolic diffeomorphisms, Ergod. Theory Dyn. Syst., 35 (2015), 412-430.
doi: 10.1017/etds.2014.126. |
[11] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., (1980), 137–173. |
[12] |
S. Kryzhevich and S. Tikhomirov,
Partial hyperbolicity and central shadowing, Discrete Contin. Dyn. Syst., 33 (2013), 2901-2909.
doi: 10.3934/dcds.2013.33.2901. |
[13] |
K. Palmer, Shadowing in Dynamical Systems, Theory and applications. Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-1-4757-3210-8. |
[14] |
S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. |
[15] |
S. Y. Pilyugin,
Shadowing in structurally stable flows, J. Differential Equations, 140 (1997), 238-265.
doi: 10.1006/jdeq.1997.3295. |
[16] |
J. G. Sinai,
Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.
|
[17] |
W. X. Sun and Y. Yang,
Hyperbolic periodic points for chain hyperbolic homoclinic classes, Discrete Contin. Dyn. Syst., 36 (2016), 3911-3925.
doi: 10.3934/dcds.2016.36.3911. |
[18] |
W. X. Sun, T. Young and Y. H. Zhou,
Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., 361 (2009), 3071-3082.
doi: 10.1090/S0002-9947-08-04743-0. |
[19] |
L. Wang and Y. J. Zhu,
Center specification property and entropy for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 36 (2016), 469-479.
doi: 10.3934/dcds.2016.36.469. |
[20] |
F. Zhang and Y. H. Zhou,
On the limit quasi-shadowing property, Discrete Contin. Dyn. Syst., 37 (2017), 2861-2879.
doi: 10.3934/dcds.2017123. |
show all references
References:
[1] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Pro. Steklov Inst. Math., 90 (1967), 209 pp. |
[2] |
D. Bohnet and C. Bonatti,
Partially hyperbolic diffeomorphisms with uniformly center foliation: The quotient dynamics, Ergod. Theory Dyn. Syst., 36 (20165), 1067-1105.
doi: 10.1017/etds.2014.102. |
[3] |
R. Bowen,
Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
R. Bowen,
Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[5] |
S. B. Gan,
A generalized shadowing lemma, Discrete Contin. Dyn. Syst., 8 (2002), 627-632.
doi: 10.3934/dcds.2002.8.627. |
[6] |
S. B. Gan and L. Wen,
Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[7] |
S. B. Gan and D. W. Yang,
Morse-Smale systems and horseshoes for three dimensional singular flows, Ann. Sci. Éc. Norm. Supér., 51 (2018), 39-112.
doi: 10.24033/asens.2351. |
[8] |
B. Han and X. Wen,
A shadowing lemma for quasi-hyperbolic strings of flows, J. Differential Equations, 264 (2018), 1-29.
doi: 10.1016/j.jde.2017.08.065. |
[9] |
S. Hayashi,
Connecting invariant manifolds and the solution of the $C^1$ stability conjecture and $\Omega$-stability conjecture for flows, Ann. Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[10] |
H. Y. Hu, Y. H. Zhou and Y. J. Zhu,
Quasi-shadowing for partially hyperbolic diffeomorphisms, Ergod. Theory Dyn. Syst., 35 (2015), 412-430.
doi: 10.1017/etds.2014.126. |
[11] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., (1980), 137–173. |
[12] |
S. Kryzhevich and S. Tikhomirov,
Partial hyperbolicity and central shadowing, Discrete Contin. Dyn. Syst., 33 (2013), 2901-2909.
doi: 10.3934/dcds.2013.33.2901. |
[13] |
K. Palmer, Shadowing in Dynamical Systems, Theory and applications. Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-1-4757-3210-8. |
[14] |
S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. |
[15] |
S. Y. Pilyugin,
Shadowing in structurally stable flows, J. Differential Equations, 140 (1997), 238-265.
doi: 10.1006/jdeq.1997.3295. |
[16] |
J. G. Sinai,
Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.
|
[17] |
W. X. Sun and Y. Yang,
Hyperbolic periodic points for chain hyperbolic homoclinic classes, Discrete Contin. Dyn. Syst., 36 (2016), 3911-3925.
doi: 10.3934/dcds.2016.36.3911. |
[18] |
W. X. Sun, T. Young and Y. H. Zhou,
Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., 361 (2009), 3071-3082.
doi: 10.1090/S0002-9947-08-04743-0. |
[19] |
L. Wang and Y. J. Zhu,
Center specification property and entropy for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 36 (2016), 469-479.
doi: 10.3934/dcds.2016.36.469. |
[20] |
F. Zhang and Y. H. Zhou,
On the limit quasi-shadowing property, Discrete Contin. Dyn. Syst., 37 (2017), 2861-2879.
doi: 10.3934/dcds.2017123. |
[1] |
Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123 |
[2] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[3] |
Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963 |
[4] |
Sergei Yu. Pilyugin. Variational shadowing. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733 |
[5] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040 |
[6] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[7] |
Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533 |
[8] |
Will Brian, Jonathan Meddaugh, Brian Raines. Shadowing is generic on dendrites. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2211-2220. doi: 10.3934/dcdss.2019142 |
[9] |
Shaobo Gan. A generalized shadowing lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627 |
[10] |
Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235 |
[11] |
S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287 |
[12] |
S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29 |
[13] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[14] |
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 |
[15] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
[16] |
Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346 |
[17] |
Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761 |
[18] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[19] |
Laurent Boudin, Francesco Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic and Related Models, 2009, 2 (3) : 433-449. doi: 10.3934/krm.2009.2.433 |
[20] |
Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]