We consider generalized models on coral broadcast spawning phenomena involving diffusion, advection, chemotaxis, and reactions when egg and sperm densities are different. We prove the global-in-time existence of the regular solutions of the models as well as their temporal decays in two and three dimensions. We also show that the total masses of egg and sperm density have positive lower bounds as time tends to infinity in three dimensions.
Citation: |
[1] |
J. Ahn, K. Kang, J. Kim and J. Lee, Lower bound of mass in a chemotactic model with advection and absorbing reaction, SIAM J. Math. Anal., 49 (2017), 723-755.
doi: 10.1137/16M1071778.![]() ![]() ![]() |
[2] |
M. Chae, K. Kang and J. Lee, Asymptotic behaviors of solutions for an aerotaxis model coupled to fluid equations, J. Korean Math. Soc., 53 (2016), 127-146.
doi: 10.4134/JKMS.2016.53.1.127.![]() ![]() ![]() |
[3] |
M. Chae, K. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224.![]() ![]() ![]() |
[4] |
M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271-2297.
doi: 10.3934/dcds.2013.33.2271.![]() ![]() ![]() |
[5] |
M. Chae, K. Kang, J. Lee and K.-A. Lee, A regularity condition and temporal asymptotics for chemotaxis-fluid equations, Nonlinearity, 31 (2018), 351-387.
doi: 10.1088/1361-6544/aa92ec.![]() ![]() ![]() |
[6] |
J. C. Coll and et al., Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata, Mar. Biol., 118 (1994), 177-182.
![]() |
[7] |
J. C. Coll and et al., Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the
sperm attractant in the egg of the soft coral Lobophytum crassum (Cnidaria: Octocorallia), Mar. Biol., 123 (1995), 137-143.
![]() |
[8] |
M. W. Denny and M. F. Shibata, Consequences of surf-sone turbulence for settlement and external fertilization, Am. Nat, 134 (1989), 859-889.
![]() |
[9] |
J. E. Eckman, Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates, J. Exp. Mar. Biol. Ecol., 200 (1996), 207-237.
doi: 10.1016/S0022-0981(96)02644-5.![]() ![]() |
[10] |
E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.
doi: 10.1016/j.nonrwa.2014.07.001.![]() ![]() ![]() |
[11] |
E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.
doi: 10.1088/1361-6544/aa9d5f.![]() ![]() ![]() |
[12] |
Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications for Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
doi: 10.1016/0022-1236(91)90136-S.![]() ![]() ![]() |
[13] |
E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() ![]() |
[14] |
E. F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
[15] |
A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Differential Equations, 37 (2012), 298-318.
doi: 10.1080/03605302.2011.589879.![]() ![]() ![]() |
[16] |
A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys., 53 (2012), 115609, 9 pp.
doi: 10.1063/1.4742858.![]() ![]() ![]() |
[17] |
H. Lasker, High fertilization success in a surface brooding Carribean Gorgonian, Biol. Bull., 210 (2006), 10-17.
![]() |
[18] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biol. Biophys., 15 (1953), 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
[19] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. PDE., 32 (2007), 849-977.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
[20] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.
doi: 10.1016/j.jmaa.2008.07.071.![]() ![]() ![]() |
[21] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logisitic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |