• Previous Article
    Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness, pattern formation and spiky stationary solutions in a Beddington–DeAngelis competition system
April  2020, 40(4): 2135-2163. doi: 10.3934/dcds.2020109

Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization

1. 

Department of Applied Mathematics and Institute for integrated Mathematical Sciences, Hankyong National University, Ansung, Korea

2. 

Department of Mathematics, Yonsei University, Seoul, Korea

3. 

Department of Mathematics, Chung-Ang University, Seoul, Korea

* Corresponding author: Jihoon Lee

Received  April 2019 Revised  October 2019 Published  January 2020

We consider generalized models on coral broadcast spawning phenomena involving diffusion, advection, chemotaxis, and reactions when egg and sperm densities are different. We prove the global-in-time existence of the regular solutions of the models as well as their temporal decays in two and three dimensions. We also show that the total masses of egg and sperm density have positive lower bounds as time tends to infinity in three dimensions.

Citation: Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109
References:
[1]

J. AhnK. KangJ. Kim and J. Lee, Lower bound of mass in a chemotactic model with advection and absorbing reaction, SIAM J. Math. Anal., 49 (2017), 723-755.  doi: 10.1137/16M1071778.

[2]

M. ChaeK. Kang and J. Lee, Asymptotic behaviors of solutions for an aerotaxis model coupled to fluid equations, J. Korean Math. Soc., 53 (2016), 127-146.  doi: 10.4134/JKMS.2016.53.1.127.

[3]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.

[4]

M. ChaeK. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271-2297.  doi: 10.3934/dcds.2013.33.2271.

[5]

M. ChaeK. KangJ. Lee and K.-A. Lee, A regularity condition and temporal asymptotics for chemotaxis-fluid equations, Nonlinearity, 31 (2018), 351-387.  doi: 10.1088/1361-6544/aa92ec.

[6]

J. C. Coll and et al., Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata, Mar. Biol., 118 (1994), 177-182.

[7]

J. C. Coll and et al., Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the sperm attractant in the egg of the soft coral Lobophytum crassum (Cnidaria: Octocorallia), Mar. Biol., 123 (1995), 137-143.

[8]

M. W. Denny and M. F. Shibata, Consequences of surf-sone turbulence for settlement and external fertilization, Am. Nat, 134 (1989), 859-889. 

[9]

J. E. Eckman, Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates, J. Exp. Mar. Biol. Ecol., 200 (1996), 207-237.  doi: 10.1016/S0022-0981(96)02644-5.

[10]

E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.  doi: 10.1016/j.nonrwa.2014.07.001.

[11]

E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.  doi: 10.1088/1361-6544/aa9d5f.

[12]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications for Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.  doi: 10.1016/0022-1236(91)90136-S.

[13]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[14]

E. F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.

[15]

A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Differential Equations, 37 (2012), 298-318.  doi: 10.1080/03605302.2011.589879.

[16]

A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys., 53 (2012), 115609, 9 pp. doi: 10.1063/1.4742858.

[17]

H. Lasker, High fertilization success in a surface brooding Carribean Gorgonian, Biol. Bull., 210 (2006), 10-17. 

[18]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biol. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. PDE., 32 (2007), 849-977.  doi: 10.1080/03605300701319003.

[20]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.

[21]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logisitic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

show all references

References:
[1]

J. AhnK. KangJ. Kim and J. Lee, Lower bound of mass in a chemotactic model with advection and absorbing reaction, SIAM J. Math. Anal., 49 (2017), 723-755.  doi: 10.1137/16M1071778.

[2]

M. ChaeK. Kang and J. Lee, Asymptotic behaviors of solutions for an aerotaxis model coupled to fluid equations, J. Korean Math. Soc., 53 (2016), 127-146.  doi: 10.4134/JKMS.2016.53.1.127.

[3]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.

[4]

M. ChaeK. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271-2297.  doi: 10.3934/dcds.2013.33.2271.

[5]

M. ChaeK. KangJ. Lee and K.-A. Lee, A regularity condition and temporal asymptotics for chemotaxis-fluid equations, Nonlinearity, 31 (2018), 351-387.  doi: 10.1088/1361-6544/aa92ec.

[6]

J. C. Coll and et al., Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata, Mar. Biol., 118 (1994), 177-182.

[7]

J. C. Coll and et al., Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the sperm attractant in the egg of the soft coral Lobophytum crassum (Cnidaria: Octocorallia), Mar. Biol., 123 (1995), 137-143.

[8]

M. W. Denny and M. F. Shibata, Consequences of surf-sone turbulence for settlement and external fertilization, Am. Nat, 134 (1989), 859-889. 

[9]

J. E. Eckman, Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates, J. Exp. Mar. Biol. Ecol., 200 (1996), 207-237.  doi: 10.1016/S0022-0981(96)02644-5.

[10]

E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.  doi: 10.1016/j.nonrwa.2014.07.001.

[11]

E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.  doi: 10.1088/1361-6544/aa9d5f.

[12]

Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications for Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.  doi: 10.1016/0022-1236(91)90136-S.

[13]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[14]

E. F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.

[15]

A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Differential Equations, 37 (2012), 298-318.  doi: 10.1080/03605302.2011.589879.

[16]

A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys., 53 (2012), 115609, 9 pp. doi: 10.1063/1.4742858.

[17]

H. Lasker, High fertilization success in a surface brooding Carribean Gorgonian, Biol. Bull., 210 (2006), 10-17. 

[18]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biol. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. PDE., 32 (2007), 849-977.  doi: 10.1080/03605300701319003.

[20]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.

[21]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logisitic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[1]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[2]

Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184

[3]

Jishan Fan, Kun Zhao. Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3949-3967. doi: 10.3934/dcdsb.2018119

[4]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[7]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[8]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[9]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[10]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[11]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[12]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[13]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[14]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[15]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[16]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[17]

Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229

[18]

Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483

[19]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057

[20]

Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (234)
  • HTML views (87)
  • Cited by (1)

Other articles
by authors

[Back to Top]