-
Previous Article
On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls
- DCDS Home
- This Issue
-
Next Article
Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions
Semilinear elliptic system with boundary singularity
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
In this paper, we investigate the asymptotic behavior of local solutions for the semilinear elliptic system $ -\Delta \mathbf{u} = |\mathbf{u}|^{p-1}\mathbf{u} $ with boundary isolated singularity, where $ 1<p<\frac{n+2}{n-2} $, $ n\geq 2 $ and $ \mathbf{u} $ is a $ C^2 $ nonnegative vector-valued function defined on the half space. This work generalizes the correspondence results of Bidaut-Véron-Ponce-Véron on the scalar case, and Ghergu-Kim-Shahgholian on the internal singularity case.
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear
Schrödinger Systems, London Mathematical Society Lecture Note Series, 302. Cambridge
University Press, Cambridge, 2004. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. PureAppl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[3] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[4] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 40 (2011), 183-221.
doi: 10.1007/s00526-010-0337-z. |
[5] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Boundary singularities of positive solutions of some nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, 344 (2007), 83-88.
doi: 10.1016/j.crma.2006.11.027. |
[6] |
M. F. Bidaut-Véron and L. Vivier,
An elliptic semilinear equation with source term involving boundary measures: The subcritical case, Rev. Mat. Iberoam., 16 (2000), 477-513.
doi: 10.4171/RMI/281. |
[7] |
H. Brézis and R. E. L. Turner,
On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.
doi: 10.1080/03605307708820041. |
[8] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
R. Caju, J. M. do Ó and A. Silva Santos,
Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1575-1601.
doi: 10.1016/j.anihpc.2019.02.001. |
[10] |
Z. J. Chen, C.-S. Lin and W. M. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[11] |
E. N. Dancer,
Some notes on the method of moving planes, Bull. Aust. Math. Soc., 46 (1992), 425-434.
doi: 10.1017/S0004972700012089. |
[12] |
M. del Pino, M. Musso and F. Pacard,
Boundary singularities for weak solutions of semilinear elliptic problems, J. Funct. Anal., 253 (2007), 241-272.
doi: 10.1016/j.jfa.2007.05.023. |
[13] |
O. Druet, E. Hebey and J. Vétois,
Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.
doi: 10.1016/j.jfa.2009.07.004. |
[14] |
M. Ghergu, S. Kim and H. Shahgholian, Isolated Singularities for Semilinear Elliptic Systems with Power-Law Nonlinearity, arXiv: 1804.04291. Google Scholar |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry of related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
A. Gmira and L. Véron,
Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 60 (1991), 271-324.
doi: 10.1215/S0012-7094-91-06414-8. |
[18] |
Y. X. Guo,
Non-existence, monotonicity for positive solutions of semilinear elliptic system in $ \mathbb{R}^n_+$, Commun. Contemp. Math., 12 (2010), 351-372.
doi: 10.1142/S0219199710003853. |
[19] |
Z. C. Han, Y. Y. Li and E. V. Teixeira,
Asymptotic behavior of solutions to the $\sigma_k$-Yamabe equation near isolated singularities, Invent. Math., 182 (2010), 635-684.
doi: 10.1007/s00222-010-0274-7. |
[20] |
N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen,
Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., 135 (1999), 233-272.
doi: 10.1007/s002220050285. |
[21] |
Y. Y. Li,
Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233 (2006), 380-425.
doi: 10.1016/j.jfa.2005.08.009. |
[22] |
P.-L. Lions,
Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450.
doi: 10.1016/0022-0396(80)90018-2. |
[23] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Ⅰ. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[24] |
A. Porretta and L. Véron,
Separable solutions of quasilinear Lane-Emden equations, J. Eur. Math. Soc., 15 (2011), 755-774.
doi: 10.4171/JEMS/375. |
[25] |
J. G. Xiong,
The critical semilinear elliptic equation with boundary isolated singularities, J. Differential Equations, 263 (2017), 1907-1930.
doi: 10.1016/j.jde.2017.03.034. |
show all references
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear
Schrödinger Systems, London Mathematical Society Lecture Note Series, 302. Cambridge
University Press, Cambridge, 2004. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. PureAppl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[3] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[4] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 40 (2011), 183-221.
doi: 10.1007/s00526-010-0337-z. |
[5] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Boundary singularities of positive solutions of some nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, 344 (2007), 83-88.
doi: 10.1016/j.crma.2006.11.027. |
[6] |
M. F. Bidaut-Véron and L. Vivier,
An elliptic semilinear equation with source term involving boundary measures: The subcritical case, Rev. Mat. Iberoam., 16 (2000), 477-513.
doi: 10.4171/RMI/281. |
[7] |
H. Brézis and R. E. L. Turner,
On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.
doi: 10.1080/03605307708820041. |
[8] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
R. Caju, J. M. do Ó and A. Silva Santos,
Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1575-1601.
doi: 10.1016/j.anihpc.2019.02.001. |
[10] |
Z. J. Chen, C.-S. Lin and W. M. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[11] |
E. N. Dancer,
Some notes on the method of moving planes, Bull. Aust. Math. Soc., 46 (1992), 425-434.
doi: 10.1017/S0004972700012089. |
[12] |
M. del Pino, M. Musso and F. Pacard,
Boundary singularities for weak solutions of semilinear elliptic problems, J. Funct. Anal., 253 (2007), 241-272.
doi: 10.1016/j.jfa.2007.05.023. |
[13] |
O. Druet, E. Hebey and J. Vétois,
Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.
doi: 10.1016/j.jfa.2009.07.004. |
[14] |
M. Ghergu, S. Kim and H. Shahgholian, Isolated Singularities for Semilinear Elliptic Systems with Power-Law Nonlinearity, arXiv: 1804.04291. Google Scholar |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry of related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
A. Gmira and L. Véron,
Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 60 (1991), 271-324.
doi: 10.1215/S0012-7094-91-06414-8. |
[18] |
Y. X. Guo,
Non-existence, monotonicity for positive solutions of semilinear elliptic system in $ \mathbb{R}^n_+$, Commun. Contemp. Math., 12 (2010), 351-372.
doi: 10.1142/S0219199710003853. |
[19] |
Z. C. Han, Y. Y. Li and E. V. Teixeira,
Asymptotic behavior of solutions to the $\sigma_k$-Yamabe equation near isolated singularities, Invent. Math., 182 (2010), 635-684.
doi: 10.1007/s00222-010-0274-7. |
[20] |
N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen,
Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., 135 (1999), 233-272.
doi: 10.1007/s002220050285. |
[21] |
Y. Y. Li,
Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233 (2006), 380-425.
doi: 10.1016/j.jfa.2005.08.009. |
[22] |
P.-L. Lions,
Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450.
doi: 10.1016/0022-0396(80)90018-2. |
[23] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Ⅰ. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[24] |
A. Porretta and L. Véron,
Separable solutions of quasilinear Lane-Emden equations, J. Eur. Math. Soc., 15 (2011), 755-774.
doi: 10.4171/JEMS/375. |
[25] |
J. G. Xiong,
The critical semilinear elliptic equation with boundary isolated singularities, J. Differential Equations, 263 (2017), 1907-1930.
doi: 10.1016/j.jde.2017.03.034. |
[1] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[2] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[3] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[4] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[6] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[7] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[8] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[9] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[10] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[11] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[12] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[13] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[14] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[15] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[16] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[17] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[18] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[19] |
Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021018 |
[20] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]