
-
Previous Article
Spectral decomposition for rescaling expansive flows with rescaled shadowing
- DCDS Home
- This Issue
-
Next Article
Semilinear elliptic system with boundary singularity
On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls
School of Mathematical Sciences and Mathematical Institute, Nanjing Normal University, Nanjing 210023, China |
In this paper, we are concerned with the global smooth solution problem for 3-D compressible isentropic Euler equations with vanishing density in an infinitely expanding ball. It is well-known that the classical solution of compressible Euler equations generally forms the shock as well as blows up in finite time due to the compression of gases. However, for the rarefactive gases, it is expected that the compressible Euler equations will admit global smooth solutions. We now focus on the movement of compressible gases in an infinitely expanding ball. Because of the conservation of mass, the fluid in the expanding ball becomes rarefied meanwhile there are no appearances of vacuum domains in any part of the expansive ball, which is easily observed in finite time. We will confirm this interesting phenomenon from the mathematical point of view. Through constructing some anisotropy weighted Sobolev spaces, and by carrying out the new observations and involved analysis on the radial speed and angular speeds together with the divergence and rotations of velocity, the uniform weighted estimates on sound speed and velocity are established. From this, the pointwise time-decay estimate of sound speed is obtained, and the smooth gas fluids without vacuum are shown to exist globally.
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New
York-London, 1975. |
[2] |
S. Alinhac,
Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.
doi: 10.1007/BF01231301. |
[3] |
S. Alinhac,
The null condition for quasilinear wave equations in two space dimensions. Ⅰ, Invent. Math., 145 (2001), 597-618.
doi: 10.1007/s002220100165. |
[4] |
J. P. Bourguignon and H. Brezis,
Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[5] |
D. Christodoulou,
Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.
doi: 10.1002/cpa.3160390205. |
[6] |
D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007.
doi: 10.4171/031. |
[7] |
D. Christodoulou and S. Miao, Compressible Flow and Euler's Equations, Surveys of Modern
Mathematics, 9. International Press, Somerville, MA, Higher Education Press, Beijing, 2014. |
[8] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., New York, N.Y., 1948. |
[9] |
D. Coutand and S. Shkoller,
Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366.
doi: 10.1002/cpa.20344. |
[10] |
D. Coutand and S. Shkoller,
Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.
doi: 10.1007/s00205-012-0536-1. |
[11] |
B. B. Ding, I. Witt and H. C. Yin,
The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases, J. Differential Equations, 258 (2015), 445-482.
doi: 10.1016/j.jde.2014.09.018. |
[12] |
K. O. Friedrichs,
Symmetric posifive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-410.
doi: 10.1002/cpa.3160110306. |
[13] |
P. Godin,
Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl., 87 (2007), 91-117.
doi: 10.1016/j.matpur.2006.10.011. |
[14] |
M. Grassin,
Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47 (1998), 1397-1432.
doi: 10.1512/iumj.1998.47.1608. |
[15] |
M. Hadžić and J. H. Jang,
Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math., 214 (2018), 1205-1266.
doi: 10.1007/s00222-018-0821-1. |
[16] |
F. Hou and H. C. Yin,
Global smooth axisymmetric solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity, J. Differential Equations, 267 (2019), 3114-3161.
doi: 10.1016/j.jde.2019.03.038. |
[17] |
X. D. Huang, J. Li and Z. P. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[18] |
J. H. Jang and N. Masmoudi,
Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385.
doi: 10.1002/cpa.20285. |
[19] |
J. H. Jang and N. Masmoudi,
Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111.
doi: 10.1002/cpa.21517. |
[20] |
S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear
Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl.
Math., Amer. Math. Soc., Providence, RI, 23 (1986), 293–326.
doi: doi. |
[21] |
J. Li, I. Witt and H. C. Yin,
A global multidimensional shock wave for 2-D and 3-D unsteady potential flow equations, SIAM J. Math. Anal., 50 (2018), 933-1009.
doi: 10.1137/17M1114661. |
[22] |
T.-P. Liu, Z. P. Xin and T. Yang,
Vacuum states for compressible flow, Discrete Contin. Dynam. Sys., 4 (1998), 1-32.
doi: 10.3934/dcds.1996.2.1. |
[23] |
J. Luk and J. Speck,
Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity, Invent. Math., 214 (2018), 1-169.
doi: 10.1007/s00222-018-0799-8. |
[24] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[25] |
A. Majda and E. Thomann,
Multidimensional shock fronts for second order wave equations, Comm. Partial Differential Equations, 12 (1987), 777-828.
doi: 10.1080/03605308708820509. |
[26] |
T. Makino, S. Ukai and S. Kawashima,
Sur la solution à support compact de l'équations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.
doi: 10.1007/BF03167100. |
[27] |
M. A. Rammaha,
Formation of singularities in compressible fluids in two-space dimensions, Proc. Am. Math. Soc., 107 (1989), 705-714.
doi: 10.1090/S0002-9939-1989-0984811-5. |
[28] |
D. Serre,
Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), 47 (1997), 139-153.
doi: 10.5802/aif.1563. |
[29] |
S. Shkoller and T. C. Sideris,
Global existence of near-affine solutions to the compressible Euler equations, Arch. Ration. Mech. Anal., 234 (2019), 115-180.
doi: 10.1007/s00205-019-01387-4. |
[30] |
T. C. Sideris,
Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475-485.
doi: 10.1007/BF01210741. |
[31] |
T. C. Sideris,
Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), 141-176.
doi: 10.1007/s00205-017-1106-3. |
[32] |
Z. P. Xin,
Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[33] |
G. Xu and H. C. Yin,
On global multidimensional supersonic flows with vacuum states at infinity, Arch. Ration. Mech. Anal., 218 (2015), 1189-1238.
doi: 10.1007/s00205-015-0878-6. |
[34] |
G. Xu and H. C. Yin, Global multidimensional supersonic Euler flows with vacuum states at infinity, preprint, (2019). Google Scholar |
[35] |
G. Xu and H. C. Yin,
The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball. Ⅰ. 3D irrotational Euler equations, Phys. Scr., 93 (2018), 1-35.
doi: 10.1088/1402-4896/aad681. |
[36] |
H. C. Yin and L. Zhang,
The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅱ. 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 38 (2018), 1063-1102.
doi: 10.3934/dcds.2018045. |
[37] |
H. C. Yin and W. B. Zhao,
The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅲ. 3D Boltzmann equation, J. Differential Equations, 264 (2018), 30-81.
doi: 10.1016/j.jde.2017.08.064. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New
York-London, 1975. |
[2] |
S. Alinhac,
Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.
doi: 10.1007/BF01231301. |
[3] |
S. Alinhac,
The null condition for quasilinear wave equations in two space dimensions. Ⅰ, Invent. Math., 145 (2001), 597-618.
doi: 10.1007/s002220100165. |
[4] |
J. P. Bourguignon and H. Brezis,
Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[5] |
D. Christodoulou,
Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.
doi: 10.1002/cpa.3160390205. |
[6] |
D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007.
doi: 10.4171/031. |
[7] |
D. Christodoulou and S. Miao, Compressible Flow and Euler's Equations, Surveys of Modern
Mathematics, 9. International Press, Somerville, MA, Higher Education Press, Beijing, 2014. |
[8] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., New York, N.Y., 1948. |
[9] |
D. Coutand and S. Shkoller,
Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366.
doi: 10.1002/cpa.20344. |
[10] |
D. Coutand and S. Shkoller,
Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.
doi: 10.1007/s00205-012-0536-1. |
[11] |
B. B. Ding, I. Witt and H. C. Yin,
The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases, J. Differential Equations, 258 (2015), 445-482.
doi: 10.1016/j.jde.2014.09.018. |
[12] |
K. O. Friedrichs,
Symmetric posifive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-410.
doi: 10.1002/cpa.3160110306. |
[13] |
P. Godin,
Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl., 87 (2007), 91-117.
doi: 10.1016/j.matpur.2006.10.011. |
[14] |
M. Grassin,
Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47 (1998), 1397-1432.
doi: 10.1512/iumj.1998.47.1608. |
[15] |
M. Hadžić and J. H. Jang,
Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math., 214 (2018), 1205-1266.
doi: 10.1007/s00222-018-0821-1. |
[16] |
F. Hou and H. C. Yin,
Global smooth axisymmetric solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity, J. Differential Equations, 267 (2019), 3114-3161.
doi: 10.1016/j.jde.2019.03.038. |
[17] |
X. D. Huang, J. Li and Z. P. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[18] |
J. H. Jang and N. Masmoudi,
Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385.
doi: 10.1002/cpa.20285. |
[19] |
J. H. Jang and N. Masmoudi,
Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111.
doi: 10.1002/cpa.21517. |
[20] |
S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear
Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl.
Math., Amer. Math. Soc., Providence, RI, 23 (1986), 293–326.
doi: doi. |
[21] |
J. Li, I. Witt and H. C. Yin,
A global multidimensional shock wave for 2-D and 3-D unsteady potential flow equations, SIAM J. Math. Anal., 50 (2018), 933-1009.
doi: 10.1137/17M1114661. |
[22] |
T.-P. Liu, Z. P. Xin and T. Yang,
Vacuum states for compressible flow, Discrete Contin. Dynam. Sys., 4 (1998), 1-32.
doi: 10.3934/dcds.1996.2.1. |
[23] |
J. Luk and J. Speck,
Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity, Invent. Math., 214 (2018), 1-169.
doi: 10.1007/s00222-018-0799-8. |
[24] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[25] |
A. Majda and E. Thomann,
Multidimensional shock fronts for second order wave equations, Comm. Partial Differential Equations, 12 (1987), 777-828.
doi: 10.1080/03605308708820509. |
[26] |
T. Makino, S. Ukai and S. Kawashima,
Sur la solution à support compact de l'équations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.
doi: 10.1007/BF03167100. |
[27] |
M. A. Rammaha,
Formation of singularities in compressible fluids in two-space dimensions, Proc. Am. Math. Soc., 107 (1989), 705-714.
doi: 10.1090/S0002-9939-1989-0984811-5. |
[28] |
D. Serre,
Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), 47 (1997), 139-153.
doi: 10.5802/aif.1563. |
[29] |
S. Shkoller and T. C. Sideris,
Global existence of near-affine solutions to the compressible Euler equations, Arch. Ration. Mech. Anal., 234 (2019), 115-180.
doi: 10.1007/s00205-019-01387-4. |
[30] |
T. C. Sideris,
Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475-485.
doi: 10.1007/BF01210741. |
[31] |
T. C. Sideris,
Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), 141-176.
doi: 10.1007/s00205-017-1106-3. |
[32] |
Z. P. Xin,
Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[33] |
G. Xu and H. C. Yin,
On global multidimensional supersonic flows with vacuum states at infinity, Arch. Ration. Mech. Anal., 218 (2015), 1189-1238.
doi: 10.1007/s00205-015-0878-6. |
[34] |
G. Xu and H. C. Yin, Global multidimensional supersonic Euler flows with vacuum states at infinity, preprint, (2019). Google Scholar |
[35] |
G. Xu and H. C. Yin,
The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball. Ⅰ. 3D irrotational Euler equations, Phys. Scr., 93 (2018), 1-35.
doi: 10.1088/1402-4896/aad681. |
[36] |
H. C. Yin and L. Zhang,
The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅱ. 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 38 (2018), 1063-1102.
doi: 10.3934/dcds.2018045. |
[37] |
H. C. Yin and W. B. Zhao,
The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅲ. 3D Boltzmann equation, J. Differential Equations, 264 (2018), 30-81.
doi: 10.1016/j.jde.2017.08.064. |




[1] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[2] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[3] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009 |
[4] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[5] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[6] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[7] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[8] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[9] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[10] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[11] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[12] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[13] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[14] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[15] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[16] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[17] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[18] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[19] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]