April  2020, 40(4): 2213-2265. doi: 10.3934/dcds.2020112

On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls

School of Mathematical Sciences and Mathematical Institute, Nanjing Normal University, Nanjing 210023, China

* Corresponding author: Huicheng Yin

Received  May 2019 Revised  October 2019 Published  January 2020

Fund Project: The first author is supported by NSFC grant No.11571141, No.11971237, and the second author is supported by NSFC grant No.11571177, No.11731007.

In this paper, we are concerned with the global smooth solution problem for 3-D compressible isentropic Euler equations with vanishing density in an infinitely expanding ball. It is well-known that the classical solution of compressible Euler equations generally forms the shock as well as blows up in finite time due to the compression of gases. However, for the rarefactive gases, it is expected that the compressible Euler equations will admit global smooth solutions. We now focus on the movement of compressible gases in an infinitely expanding ball. Because of the conservation of mass, the fluid in the expanding ball becomes rarefied meanwhile there are no appearances of vacuum domains in any part of the expansive ball, which is easily observed in finite time. We will confirm this interesting phenomenon from the mathematical point of view. Through constructing some anisotropy weighted Sobolev spaces, and by carrying out the new observations and involved analysis on the radial speed and angular speeds together with the divergence and rotations of velocity, the uniform weighted estimates on sound speed and velocity are established. From this, the pointwise time-decay estimate of sound speed is obtained, and the smooth gas fluids without vacuum are shown to exist globally.

Citation: Gang Xu, Huicheng Yin. On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2213-2265. doi: 10.3934/dcds.2020112
References:
[1]

R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.  Google Scholar

[2]

S. Alinhac, Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.  doi: 10.1007/BF01231301.  Google Scholar

[3]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions. Ⅰ, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.  Google Scholar

[4]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[5]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.  doi: 10.1002/cpa.3160390205.  Google Scholar

[6]

D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[7]

D. Christodoulou and S. Miao, Compressible Flow and Euler's Equations, Surveys of Modern Mathematics, 9. International Press, Somerville, MA, Higher Education Press, Beijing, 2014.  Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., New York, N.Y., 1948.  Google Scholar

[9]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366.  doi: 10.1002/cpa.20344.  Google Scholar

[10]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.  doi: 10.1007/s00205-012-0536-1.  Google Scholar

[11]

B. B. DingI. Witt and H. C. Yin, The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases, J. Differential Equations, 258 (2015), 445-482.  doi: 10.1016/j.jde.2014.09.018.  Google Scholar

[12]

K. O. Friedrichs, Symmetric posifive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-410.  doi: 10.1002/cpa.3160110306.  Google Scholar

[13]

P. Godin, Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl., 87 (2007), 91-117.  doi: 10.1016/j.matpur.2006.10.011.  Google Scholar

[14]

M. Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47 (1998), 1397-1432.  doi: 10.1512/iumj.1998.47.1608.  Google Scholar

[15]

M. Hadžić and J. H. Jang, Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math., 214 (2018), 1205-1266.  doi: 10.1007/s00222-018-0821-1.  Google Scholar

[16]

F. Hou and H. C. Yin, Global smooth axisymmetric solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity, J. Differential Equations, 267 (2019), 3114-3161.  doi: 10.1016/j.jde.2019.03.038.  Google Scholar

[17]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[18]

J. H. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385.  doi: 10.1002/cpa.20285.  Google Scholar

[19]

J. H. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111.  doi: 10.1002/cpa.21517.  Google Scholar

[20]

S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 23 (1986), 293–326. doi: doi.  Google Scholar

[21]

J. LiI. Witt and H. C. Yin, A global multidimensional shock wave for 2-D and 3-D unsteady potential flow equations, SIAM J. Math. Anal., 50 (2018), 933-1009.  doi: 10.1137/17M1114661.  Google Scholar

[22]

T.-P. LiuZ. P. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Sys., 4 (1998), 1-32.  doi: 10.3934/dcds.1996.2.1.  Google Scholar

[23]

J. Luk and J. Speck, Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity, Invent. Math., 214 (2018), 1-169.  doi: 10.1007/s00222-018-0799-8.  Google Scholar

[24]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[25]

A. Majda and E. Thomann, Multidimensional shock fronts for second order wave equations, Comm. Partial Differential Equations, 12 (1987), 777-828.  doi: 10.1080/03605308708820509.  Google Scholar

[26]

T. MakinoS. Ukai and S. Kawashima, Sur la solution à support compact de l'équations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.  doi: 10.1007/BF03167100.  Google Scholar

[27]

M. A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions, Proc. Am. Math. Soc., 107 (1989), 705-714.  doi: 10.1090/S0002-9939-1989-0984811-5.  Google Scholar

[28]

D. Serre, Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), 47 (1997), 139-153.  doi: 10.5802/aif.1563.  Google Scholar

[29]

S. Shkoller and T. C. Sideris, Global existence of near-affine solutions to the compressible Euler equations, Arch. Ration. Mech. Anal., 234 (2019), 115-180.  doi: 10.1007/s00205-019-01387-4.  Google Scholar

[30]

T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475-485.  doi: 10.1007/BF01210741.  Google Scholar

[31]

T. C. Sideris, Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), 141-176.  doi: 10.1007/s00205-017-1106-3.  Google Scholar

[32]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

G. Xu and H. C. Yin, On global multidimensional supersonic flows with vacuum states at infinity, Arch. Ration. Mech. Anal., 218 (2015), 1189-1238.  doi: 10.1007/s00205-015-0878-6.  Google Scholar

[34]

G. Xu and H. C. Yin, Global multidimensional supersonic Euler flows with vacuum states at infinity, preprint, (2019). Google Scholar

[35]

G. Xu and H. C. Yin, The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball. Ⅰ. 3D irrotational Euler equations, Phys. Scr., 93 (2018), 1-35.  doi: 10.1088/1402-4896/aad681.  Google Scholar

[36]

H. C. Yin and L. Zhang, The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅱ. 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 38 (2018), 1063-1102.  doi: 10.3934/dcds.2018045.  Google Scholar

[37]

H. C. Yin and W. B. Zhao, The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅲ. 3D Boltzmann equation, J. Differential Equations, 264 (2018), 30-81.  doi: 10.1016/j.jde.2017.08.064.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.  Google Scholar

[2]

S. Alinhac, Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.  doi: 10.1007/BF01231301.  Google Scholar

[3]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions. Ⅰ, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.  Google Scholar

[4]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[5]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.  doi: 10.1002/cpa.3160390205.  Google Scholar

[6]

D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[7]

D. Christodoulou and S. Miao, Compressible Flow and Euler's Equations, Surveys of Modern Mathematics, 9. International Press, Somerville, MA, Higher Education Press, Beijing, 2014.  Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., New York, N.Y., 1948.  Google Scholar

[9]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366.  doi: 10.1002/cpa.20344.  Google Scholar

[10]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.  doi: 10.1007/s00205-012-0536-1.  Google Scholar

[11]

B. B. DingI. Witt and H. C. Yin, The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases, J. Differential Equations, 258 (2015), 445-482.  doi: 10.1016/j.jde.2014.09.018.  Google Scholar

[12]

K. O. Friedrichs, Symmetric posifive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-410.  doi: 10.1002/cpa.3160110306.  Google Scholar

[13]

P. Godin, Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl., 87 (2007), 91-117.  doi: 10.1016/j.matpur.2006.10.011.  Google Scholar

[14]

M. Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47 (1998), 1397-1432.  doi: 10.1512/iumj.1998.47.1608.  Google Scholar

[15]

M. Hadžić and J. H. Jang, Expanding large global solutions of the equations of compressible fluid mechanics, Invent. Math., 214 (2018), 1205-1266.  doi: 10.1007/s00222-018-0821-1.  Google Scholar

[16]

F. Hou and H. C. Yin, Global smooth axisymmetric solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity, J. Differential Equations, 267 (2019), 3114-3161.  doi: 10.1016/j.jde.2019.03.038.  Google Scholar

[17]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[18]

J. H. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385.  doi: 10.1002/cpa.20285.  Google Scholar

[19]

J. H. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111.  doi: 10.1002/cpa.21517.  Google Scholar

[20]

S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 23 (1986), 293–326. doi: doi.  Google Scholar

[21]

J. LiI. Witt and H. C. Yin, A global multidimensional shock wave for 2-D and 3-D unsteady potential flow equations, SIAM J. Math. Anal., 50 (2018), 933-1009.  doi: 10.1137/17M1114661.  Google Scholar

[22]

T.-P. LiuZ. P. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Sys., 4 (1998), 1-32.  doi: 10.3934/dcds.1996.2.1.  Google Scholar

[23]

J. Luk and J. Speck, Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity, Invent. Math., 214 (2018), 1-169.  doi: 10.1007/s00222-018-0799-8.  Google Scholar

[24]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[25]

A. Majda and E. Thomann, Multidimensional shock fronts for second order wave equations, Comm. Partial Differential Equations, 12 (1987), 777-828.  doi: 10.1080/03605308708820509.  Google Scholar

[26]

T. MakinoS. Ukai and S. Kawashima, Sur la solution à support compact de l'équations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.  doi: 10.1007/BF03167100.  Google Scholar

[27]

M. A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions, Proc. Am. Math. Soc., 107 (1989), 705-714.  doi: 10.1090/S0002-9939-1989-0984811-5.  Google Scholar

[28]

D. Serre, Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble), 47 (1997), 139-153.  doi: 10.5802/aif.1563.  Google Scholar

[29]

S. Shkoller and T. C. Sideris, Global existence of near-affine solutions to the compressible Euler equations, Arch. Ration. Mech. Anal., 234 (2019), 115-180.  doi: 10.1007/s00205-019-01387-4.  Google Scholar

[30]

T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475-485.  doi: 10.1007/BF01210741.  Google Scholar

[31]

T. C. Sideris, Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), 141-176.  doi: 10.1007/s00205-017-1106-3.  Google Scholar

[32]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

G. Xu and H. C. Yin, On global multidimensional supersonic flows with vacuum states at infinity, Arch. Ration. Mech. Anal., 218 (2015), 1189-1238.  doi: 10.1007/s00205-015-0878-6.  Google Scholar

[34]

G. Xu and H. C. Yin, Global multidimensional supersonic Euler flows with vacuum states at infinity, preprint, (2019). Google Scholar

[35]

G. Xu and H. C. Yin, The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball. Ⅰ. 3D irrotational Euler equations, Phys. Scr., 93 (2018), 1-35.  doi: 10.1088/1402-4896/aad681.  Google Scholar

[36]

H. C. Yin and L. Zhang, The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅱ. 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 38 (2018), 1063-1102.  doi: 10.3934/dcds.2018045.  Google Scholar

[37]

H. C. Yin and W. B. Zhao, The global existence and large time behavior of smooth compressible fluids in infinitely expanding balls. Ⅲ. 3D Boltzmann equation, J. Differential Equations, 264 (2018), 30-81.  doi: 10.1016/j.jde.2017.08.064.  Google Scholar

Figure 1.  Polytropic gases lie in a 3D expanding ball
Figure 2.  Continuous transonic flow in an infinite long de Laval nozzle
Figure 3.  2-D supersonic flow without vacuum in a divergent nozzle
Figure 4.  3-D supersonic flow without vacuum in a divergent nozzle
[1]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[2]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2969. doi: 10.3934/dcdsb.2020047

[3]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[4]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[5]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[6]

Chengchun Hao. Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2885-2931. doi: 10.3934/dcdsb.2015.20.2885

[7]

Yachun Li, Shengguo Zhu. On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3059-3086. doi: 10.3934/dcds.2015.35.3059

[8]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[9]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[10]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[11]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[12]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[13]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[14]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[15]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[16]

Fei Hou, Huicheng Yin. On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1435-1492. doi: 10.3934/dcds.2020083

[17]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[18]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[19]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[20]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (104)
  • HTML views (82)
  • Cited by (1)

Other articles
by authors

[Back to Top]