April  2020, 40(4): 2315-2333. doi: 10.3934/dcds.2020115

Dynamical obstruction to the existence of continuous sub-actions for interval maps with regularly varying property

1. 

Department of Mathematics, University of Campinas, 13083-859 Campinas, Brazil

2. 

Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, casilla 567 Valdivia, Chile

Received  June 2019 Published  January 2020

Fund Project: CNPq grant 304792/2017-9
FONDECYT 11130341 and BCH-CONICYT grant 74170014.

For transformations with regularly varying property, we identify a class of moduli of continuity related to the local behavior of the dynamics near a fixed point, and we prove that this class is not compatible with the existence of continuous sub-actions. The dynamical obstruction is given merely by a local property. As a natural complement, we also deal with the question of the existence of continuous sub-actions focusing on a particular dynamic setting. Applications of both results include interval maps that are expanding outside a neutral fixed point, as Manneville-Pomeau and Farey maps.

Citation: Eduardo Garibaldi, Irene Inoquio-Renteria. Dynamical obstruction to the existence of continuous sub-actions for interval maps with regularly varying property. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2315-2333. doi: 10.3934/dcds.2020115
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

T. Bousch and O. Jenkinson, Cohomology classes of dynamically non-negative $C^k$ functions, Inventiones Mathematicae, 148 (2002), 207-217.  doi: 10.1007/s002220100194.  Google Scholar

[3]

F. M. Branco, Subactions and maximizing measures for one-dimensional transformations with a critical point, Discrete Contin. Dyn. Syst., 17 (2007), 271-280.  doi: 10.3934/dcds.2007.17.271.  Google Scholar

[4]

S. D. Branton, Sub-actions for Young towers, Discrete and Continuous Dynamical Systems, 22 (2008), 541-556.  doi: 10.3934/dcds.2008.22.541.  Google Scholar

[5]

G. ContrerasA. O. Lopes and Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1379-1409.  doi: 10.1017/S0143385701001663.  Google Scholar

[6]

E. Garibaldi, Ergodic Optimization in the Expanding Case: Concepts, Tools and Applications, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-66643-3.  Google Scholar

[7]

E. GaribaldiA. O. Lopes and Ph. Thieullen, On calibrated and separating sub-actions, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 577-602.  doi: 10.1007/s00574-009-0028-6.  Google Scholar

[8]

M. Holland, Slowly mixing systems and intermittency maps, Ergodic Theory and Dynamical Systems, 25 (2005), 133-159.  doi: 10.1017/S0143385704000343.  Google Scholar

[9]

O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst., 15 (2006), 197-224.  doi: 10.3934/dcds.2006.15.197.  Google Scholar

[10]

O. Jenkinson, Ergodic optimization in dynamical systems, Ergodic Theory and Dynamical Systems, 39 (2019), 2593-2618.  doi: 10.1017/etds.2017.142.  Google Scholar

[11]

J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France, 61 (1933), 55-62.   Google Scholar

[12]

A. O. LopesV. A. Rosas and R. O. Ruggiero, Cohomology and subcohomology problems for expansive, non Anosov geodesic flows, Discrete Contin. Dyn. Syst., 17 (2007), 403-422.  doi: 10.3934/dcds.2007.17.403.  Google Scholar

[13]

A. O. Lopes and Ph. Thieullen, Sub-actions for Anosov diffeomorphisms. Geometric methods in dynamics. Ⅱ, Astérisque, (2003), 135–146.  Google Scholar

[14]

A. O. Lopes and Ph. Thieullen, Sub-actions for Anosov flows, Ergodic Theory and Dynamical Systems, 25 (2005), 605-628.  doi: 10.1017/S0143385704000732.  Google Scholar

[15]

A. V. Medvedev, On a concave differentiable majorant of a modulus of continuity, Real Anal. Exchange, 27 (2001/02), 123-129.   Google Scholar

[16]

I. D. Morris, A sufficient condition for the subordination principle in ergodic optimization, Bulletin of the London Mathematical Society, 39 (2007), 214-220.  doi: 10.1112/blms/bdl030.  Google Scholar

[17]

I. D. Morris, The Mañé-Conze-Guivarc'h lemma for intermittent maps of the circle, Ergodc Theory and Dynamical Systems, 29 (2009), 1603-1611.  doi: 10.1017/S0143385708000837.  Google Scholar

[18]

E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[19]

R. R. Souza, Sub-actions for weakly hyperbolic one-dimensional systems, Dynamical System, 18 (2003), 165-179.  doi: 10.1080/1468936031000136126.  Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

T. Bousch and O. Jenkinson, Cohomology classes of dynamically non-negative $C^k$ functions, Inventiones Mathematicae, 148 (2002), 207-217.  doi: 10.1007/s002220100194.  Google Scholar

[3]

F. M. Branco, Subactions and maximizing measures for one-dimensional transformations with a critical point, Discrete Contin. Dyn. Syst., 17 (2007), 271-280.  doi: 10.3934/dcds.2007.17.271.  Google Scholar

[4]

S. D. Branton, Sub-actions for Young towers, Discrete and Continuous Dynamical Systems, 22 (2008), 541-556.  doi: 10.3934/dcds.2008.22.541.  Google Scholar

[5]

G. ContrerasA. O. Lopes and Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1379-1409.  doi: 10.1017/S0143385701001663.  Google Scholar

[6]

E. Garibaldi, Ergodic Optimization in the Expanding Case: Concepts, Tools and Applications, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-66643-3.  Google Scholar

[7]

E. GaribaldiA. O. Lopes and Ph. Thieullen, On calibrated and separating sub-actions, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 577-602.  doi: 10.1007/s00574-009-0028-6.  Google Scholar

[8]

M. Holland, Slowly mixing systems and intermittency maps, Ergodic Theory and Dynamical Systems, 25 (2005), 133-159.  doi: 10.1017/S0143385704000343.  Google Scholar

[9]

O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst., 15 (2006), 197-224.  doi: 10.3934/dcds.2006.15.197.  Google Scholar

[10]

O. Jenkinson, Ergodic optimization in dynamical systems, Ergodic Theory and Dynamical Systems, 39 (2019), 2593-2618.  doi: 10.1017/etds.2017.142.  Google Scholar

[11]

J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France, 61 (1933), 55-62.   Google Scholar

[12]

A. O. LopesV. A. Rosas and R. O. Ruggiero, Cohomology and subcohomology problems for expansive, non Anosov geodesic flows, Discrete Contin. Dyn. Syst., 17 (2007), 403-422.  doi: 10.3934/dcds.2007.17.403.  Google Scholar

[13]

A. O. Lopes and Ph. Thieullen, Sub-actions for Anosov diffeomorphisms. Geometric methods in dynamics. Ⅱ, Astérisque, (2003), 135–146.  Google Scholar

[14]

A. O. Lopes and Ph. Thieullen, Sub-actions for Anosov flows, Ergodic Theory and Dynamical Systems, 25 (2005), 605-628.  doi: 10.1017/S0143385704000732.  Google Scholar

[15]

A. V. Medvedev, On a concave differentiable majorant of a modulus of continuity, Real Anal. Exchange, 27 (2001/02), 123-129.   Google Scholar

[16]

I. D. Morris, A sufficient condition for the subordination principle in ergodic optimization, Bulletin of the London Mathematical Society, 39 (2007), 214-220.  doi: 10.1112/blms/bdl030.  Google Scholar

[17]

I. D. Morris, The Mañé-Conze-Guivarc'h lemma for intermittent maps of the circle, Ergodc Theory and Dynamical Systems, 29 (2009), 1603-1611.  doi: 10.1017/S0143385708000837.  Google Scholar

[18]

E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[19]

R. R. Souza, Sub-actions for weakly hyperbolic one-dimensional systems, Dynamical System, 18 (2003), 165-179.  doi: 10.1080/1468936031000136126.  Google Scholar

Figure 1.  $ d^{-}: = d(w_{n_k},w_{n_{k-1}}) $, $ d^{+}: = d(w_{n_k},w_{n_{k+1}}) $
[1]

Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007

[2]

José F. Alves. Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 363-375. doi: 10.3934/dcds.2001.7.363

[3]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[4]

José F. Alves. A survey of recent results on some statistical features of non-uniformly expanding maps. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 1-20. doi: 10.3934/dcds.2006.15.1

[5]

Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31.

[6]

Sheena D. Branton. Sub-actions for young towers. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 541-556. doi: 10.3934/dcds.2008.22.541

[7]

Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106

[8]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[9]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

[10]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[11]

Flávia M. Branco. Sub-actions and maximizing measures for one-dimensional transformations with a critical point. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 271-280. doi: 10.3934/dcds.2007.17.271

[12]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[13]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[14]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

[15]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[16]

Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163

[17]

Fernando J. Sánchez-Salas. Dimension of Markov towers for non uniformly expanding one-dimensional systems. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1447-1464. doi: 10.3934/dcds.2003.9.1447

[18]

Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585

[19]

Marzie Zaj, Abbas Fakhari, Fatemeh Helen Ghane, Azam Ehsani. Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1777-1807. doi: 10.3934/dcds.2018073

[20]

Mark Pollicott. Local Hölder regularity of densities and Livsic theorems for non-uniformly hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1247-1256. doi: 10.3934/dcds.2005.13.1247

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (151)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]