We consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group.
Piantadosi [
We consider two other conditions: the first, also given by Piantadosi [
We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel [
Citation: |
[1] |
N. Aubrun, S. Barbieri and É. Moutot, The domino problem is undecidable on surface groups, 44th International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 138 (2019), Art. 46, 14 pp.
![]() ![]() |
[2] |
N. Aubrun and J. Kari, Tiling problems on Baumslag-Solitar groups, Computations and Universality 2013, Electron. Proc. Theor. Comput. Sci. (EPTCS), EPTCS, 128 (2013), 35-46.
doi: 10.4204/EPTCS.128.12.![]() ![]() ![]() |
[3] |
A. Ballier and M. Stein, The domino problem on groups of polynomial growth, Groups, Geometry, and Dynamics, 12 (2018), 93-105.
doi: 10.4171/GGD/439.![]() ![]() ![]() |
[4] |
S. Barbieri, A geometric simulation theorem on direct products of finitely generated groups, Discrete Analysis, (2019), Paper No. 9, 25 pp.
![]() ![]() |
[5] |
S. Barbieri, Shift Spaces on Groups: Computability and Dynamics, Ph.D thesis, Université de Lyon, 2017, https://tel.archives-ouvertes.fr/tel-01563302.
![]() |
[6] |
S. Barbieri and M. Sablik, A generalization of the simulation theorem for semidirect products, Ergodic Theory and Dynamical Systems, 39 (2019), 3185-3206.
doi: 10.1017/etds.2018.21.![]() ![]() ![]() |
[7] |
R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, (1966), 72 pp.
![]() ![]() |
[8] |
D. Carroll and A. Penland, Periodic points on shifts of finite type and commensurability invariants of groups, New York Journal of Mathematics, 21 (2015), 811-822.
![]() ![]() |
[9] |
J.-R. Chazottes, J.-M. Gambaudo and F. Gautero, Tilings of the plane and Thurston semi-norm, Geometriae Dedicata, 173 (2014), 129-142.
doi: 10.1007/s10711-013-9932-4.![]() ![]() ![]() |
[10] |
D. B. Cohen and C. Goodman-Strauss, Strongly aperiodic subshifts on surface groups, Groups, Geometry, and Dynamics, 11 (2017), 1041-1059.
doi: 10.4171/GGD/421.![]() ![]() ![]() |
[11] |
D. B. Cohen, C. Goodman-Strauss and Y. Rieck, Strongly aperiodic subshifts of finite type on hyperbolic groups, arXiv: 1706.01387.
![]() |
[12] |
H. Maturana Cornejo and M. Schraudner, Weakly aperiodic $\mathbb{F}_{d}$-Wang subshift with minimal alphabet size and its complexity function, Unpublished preprint, (2018).
![]() |
[13] |
E. Jeandel, Aperiodic subshifts on polycyclic groups, arXiv: 1510.02360.
![]() |
[14] |
E. Jeandel, Translation-like actions and aperiodic subshifts on groups, arXiv: 1508.06419.
![]() |
[15] |
E. Jeandel and M. Rao, An aperiodic set of 11 Wang tiles, arXiv: 1506.06492.
![]() |
[16] |
E. Jeandel and P. Vanier, The Undecidability of the Domino Problem, Unpublished Book Chapter.
![]() |
[17] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[18] |
S. Mozes, Aperiodic tilings, Inventiones Mathematicae, 128 (1997), 603-611.
doi: 10.1007/s002220050153.![]() ![]() ![]() |
[19] |
S. T. Piantadosi, Symbolic dynamics on free groups, Discrete and Continuous Dynamical Systems, 20 (2008), 725-738.
doi: 10.3934/dcds.2008.20.725.![]() ![]() ![]() |
[20] |
A. Sahin, M. Schraudner and I. Ugarcovic, A strongly aperiodic shift of finite type for the discrete Heisenberg group, preprint, (2014), announced at: http://www.dim.uchile.cl/ mschraudner/SyDyGr/Talks/sahin_cmmdec2014.pdf.
![]() |
[21] |
H. Wang, Proving theorems by pattern recognition. Ⅱ, Bell System Technical Journal, 40 (1961), 1-41.
doi: 10.1007/978-94-009-2356-0_9.![]() ![]() |
Examples of Wang tiles with colours