• Previous Article
    Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces
  • DCDS Home
  • This Issue
  • Next Article
    Equicontinuity, transitivity and sensitivity: The Auslander-Yorke dichotomy revisited
April  2020, 40(4): 2475-2493. doi: 10.3934/dcds.2020122

Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system

1. 

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

School of Mathematical and Statistical Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

*Corresponding author: Zhijun Qiao

Received  July 2019 Revised  November 2019 Published  January 2020

In this paper, we investigate a generalized two-component rotational b-family system arising in the rotating fluid with the effect of the Coriolis force. First, we study the persistence properties of the system in weighted $ L^p $-spaces, for a large class of moderate weights. Secondly, in order to overcome the difficulty arising from higher order nonlinearity and no conservation law, we take the advantage of the specially intrinsic structure of the system and make use of commutator estimate, and then derive two blow-up results for the strong solutions to the system.

Citation: Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122
References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007%2F978-3-642-16830-7.  Google Scholar

[3]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. IMRN, (2012), 5161–5181. doi: 10.1093/imrn/rnr218.  Google Scholar

[4]

J.-Y. Chemin, Localization in fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 1 (2004), 53-135.   Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not. IMRN, (2011), 1381–1416. doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Sci. (4), 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.  Google Scholar

[12]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042.  doi: 10.1175/JPO-D-19-0079.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. doi: 10.1063/1.5083088.  Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[15]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp. doi: 10.1063/1.1845603.  Google Scholar

[16]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[17]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[18]

J. EscherO. Lechttenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[19]

L. L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89.  doi: 10.1016/j.aim.2015.11.049.  Google Scholar

[20]

H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188 (1979), 451–471.  Google Scholar

[21]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[22]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.   Google Scholar

[23]

C. X. Guan and Z. Y. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. L. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[25]

G. L. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[26]

Y. W. HanF. Guo and H. J. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear Sci., 23 (2013), 617-656.  doi: 10.1007/s00332-012-9163-0.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[29]

R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math., 103 (1998), 259-288.  doi: 10.1007/BF02762276.  Google Scholar

[30]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math., Springer, Berlin, 448 (1975), 25-70.   Google Scholar

[31]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[32]

W. S. KesslerG. C. Johnson and D. W. Moore, Sverdrup and nonlinear dynamics of the Pacific equatorial currents, J. Phys. Oceanogr., 33 (2003), 994-1008.  doi: 10.1175/1520-0485(2003)033<0994:SANDOT>2.0.CO;2.  Google Scholar

[33]

B. Moon, On the wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101.  doi: 10.1016/j.jmaa.2017.01.075.  Google Scholar

[34]

Z. J. Qiao, The Camassa-Holm hierarchy, $N$-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239 (2003), 309-341.  doi: 10.1007/s00220-003-0880-y.  Google Scholar

[35]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[37]

M. Zhu and Y. Wang, Blow-up of solutions to the rotation b-family system modeling equatorial water waves, Electron. J. Differential Equations, 2018 (2018), 23 pp.  Google Scholar

show all references

References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007%2F978-3-642-16830-7.  Google Scholar

[3]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. IMRN, (2012), 5161–5181. doi: 10.1093/imrn/rnr218.  Google Scholar

[4]

J.-Y. Chemin, Localization in fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 1 (2004), 53-135.   Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not. IMRN, (2011), 1381–1416. doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Sci. (4), 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.  Google Scholar

[12]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042.  doi: 10.1175/JPO-D-19-0079.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. doi: 10.1063/1.5083088.  Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[15]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp. doi: 10.1063/1.1845603.  Google Scholar

[16]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[17]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[18]

J. EscherO. Lechttenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[19]

L. L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89.  doi: 10.1016/j.aim.2015.11.049.  Google Scholar

[20]

H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188 (1979), 451–471.  Google Scholar

[21]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[22]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.   Google Scholar

[23]

C. X. Guan and Z. Y. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. L. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[25]

G. L. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[26]

Y. W. HanF. Guo and H. J. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear Sci., 23 (2013), 617-656.  doi: 10.1007/s00332-012-9163-0.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[29]

R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math., 103 (1998), 259-288.  doi: 10.1007/BF02762276.  Google Scholar

[30]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math., Springer, Berlin, 448 (1975), 25-70.   Google Scholar

[31]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[32]

W. S. KesslerG. C. Johnson and D. W. Moore, Sverdrup and nonlinear dynamics of the Pacific equatorial currents, J. Phys. Oceanogr., 33 (2003), 994-1008.  doi: 10.1175/1520-0485(2003)033<0994:SANDOT>2.0.CO;2.  Google Scholar

[33]

B. Moon, On the wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101.  doi: 10.1016/j.jmaa.2017.01.075.  Google Scholar

[34]

Z. J. Qiao, The Camassa-Holm hierarchy, $N$-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239 (2003), 309-341.  doi: 10.1007/s00220-003-0880-y.  Google Scholar

[35]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[37]

M. Zhu and Y. Wang, Blow-up of solutions to the rotation b-family system modeling equatorial water waves, Electron. J. Differential Equations, 2018 (2018), 23 pp.  Google Scholar

[1]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[2]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[3]

Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239

[4]

Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166

[5]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[6]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[7]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[8]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[9]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[10]

Kai Yan. On the blow up solutions to a two-component cubic Camassa-Holm system with peakons. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4565-4576. doi: 10.3934/dcds.2020191

[11]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[12]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[13]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[14]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[15]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[16]

Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010

[17]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[18]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[19]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[20]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (102)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]