-
Previous Article
Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $
- DCDS Home
- This Issue
-
Next Article
On the spectral theory of positive operators and PDE applications
On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature
1. | Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China |
2. | Center for PDEs, School of Mathematical Sciences, East China Normal University, Shanghai Key Laboratory of PMMP, Shanghai 200062, China |
3. | IECL, UMR 7502, University of Lorraine, 57073 Metz, France |
$ \Delta u +K(x) e^{2u} = 0 \quad{\rm in}\;\; \mathbb{R}^2 $ |
$ K\le 0 $ |
$ \alpha_p(K) = \sup\left\{\alpha \in \mathbb{R}:\, \int_{ \mathbb{R}^2} |K(x)|^p(1+|x|)^{2\alpha p+2(p-1)} dx<+\infty\right\}, \quad \forall\; p \ge 1. $ |
$ ({\mathbb H}_1) $ |
$ \alpha_p(K)> -\infty $ |
$ p>1 $ |
$ \alpha_1(K) > 0 $ |
$ 0 < \alpha < \alpha_1(K) $ |
$ u_\alpha $ |
$ u_\alpha(x) = \alpha \ln |x|+ c_\alpha+o\big(|x|^{-\frac{2\beta}{1+2\beta}} \big) $ |
$ \beta\in (0, \, \alpha_1(K)-\alpha) $ |
$ K_0 \leq 0 $ |
$ \alpha_p(K_0) = -\infty $ |
$ p>1 $ |
$ \alpha_1(K_0) > 0 $ |
$ u_{\alpha_*} $ |
$ u_{\alpha_*} -\alpha_*\ln|x| = O(1) $ |
$ \alpha_* > 0 $ |
References:
[1] |
L. V. Ahlfors,
An extension of Schwartz’s lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
doi: 10.2307/1990065. |
[2] |
K.-S. Cheng and C.-S. Lin,
Conformal metrics with prescribed nonpositive Gaussian on $ \mathbb{R}^2$, Calc. Var. PDE, 11 (2000), 203-231.
doi: 10.1007/s005260000037. |
[3] |
K.-S. Cheng and W.-M. Ni,
On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$, Duke Math. J., 62 (1991), 721-737.
doi: 10.1215/S0012-7094-91-06231-9. |
[4] |
K.-S. Cheng and W.-M. Ni,
On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$ Ⅱ, Math. Ann., 290 (1991), 671-680.
doi: 10.1007/BF01459266. |
[5] |
J. Kazdan and F. Warner,
Curvature functions for open 2-manifolds, Ann. Math., 99 (1974), 203-219.
doi: 10.2307/1970898. |
[6] |
R. McOwen,
On the equation $\Delta u+Ke^2u=f$ and prescribed negative curvature in $ \mathbb{R}^2$, J. Math. Anal. Appl., 103 (1984), 365-370.
doi: 10.1016/0022-247X(84)90133-1. |
[7] |
R. McOwen,
Conformal metrics in $ \mathbb{R}^2$ with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J., 34 (1985), 97-104.
doi: 10.1512/iumj.1985.34.34005. |
[8] |
W.-M. Ni,
On the elliptic equation $\Delta u+K(x)e^2u=0$ and conformal metric with prescribed Gaussian curvatures, Invent. Math., 66 (1982), 343-352.
doi: 10.1007/BF01389399. |
[9] |
D. Sattinger,
Conformal metrics in $ \mathbb{R}^2$ with prescribed curvature, Indiana Univ. Math. J., 22 (1972/73), 1-4.
doi: 10.1512/iumj.1973.22.22001. |
show all references
References:
[1] |
L. V. Ahlfors,
An extension of Schwartz’s lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
doi: 10.2307/1990065. |
[2] |
K.-S. Cheng and C.-S. Lin,
Conformal metrics with prescribed nonpositive Gaussian on $ \mathbb{R}^2$, Calc. Var. PDE, 11 (2000), 203-231.
doi: 10.1007/s005260000037. |
[3] |
K.-S. Cheng and W.-M. Ni,
On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$, Duke Math. J., 62 (1991), 721-737.
doi: 10.1215/S0012-7094-91-06231-9. |
[4] |
K.-S. Cheng and W.-M. Ni,
On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$ Ⅱ, Math. Ann., 290 (1991), 671-680.
doi: 10.1007/BF01459266. |
[5] |
J. Kazdan and F. Warner,
Curvature functions for open 2-manifolds, Ann. Math., 99 (1974), 203-219.
doi: 10.2307/1970898. |
[6] |
R. McOwen,
On the equation $\Delta u+Ke^2u=f$ and prescribed negative curvature in $ \mathbb{R}^2$, J. Math. Anal. Appl., 103 (1984), 365-370.
doi: 10.1016/0022-247X(84)90133-1. |
[7] |
R. McOwen,
Conformal metrics in $ \mathbb{R}^2$ with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J., 34 (1985), 97-104.
doi: 10.1512/iumj.1985.34.34005. |
[8] |
W.-M. Ni,
On the elliptic equation $\Delta u+K(x)e^2u=0$ and conformal metric with prescribed Gaussian curvatures, Invent. Math., 66 (1982), 343-352.
doi: 10.1007/BF01389399. |
[9] |
D. Sattinger,
Conformal metrics in $ \mathbb{R}^2$ with prescribed curvature, Indiana Univ. Math. J., 22 (1972/73), 1-4.
doi: 10.1512/iumj.1973.22.22001. |
[1] |
Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283 |
[2] |
Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43 |
[3] |
Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256 |
[4] |
Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148 |
[5] |
Yoon-Tae Jung, Soo-Young Lee, Eun-Hee Choi. Ricci curvature of conformal deformation on compact 2-manifolds. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3223-3231. doi: 10.3934/cpaa.2020140 |
[6] |
Brittany Froese Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure and Applied Analysis, 2018, 17 (2) : 671-707. doi: 10.3934/cpaa.2018036 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 |
[9] |
Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure and Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161 |
[10] |
Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265 |
[11] |
Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027 |
[12] |
Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865 |
[13] |
Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1 |
[14] |
Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041 |
[15] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[16] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[17] |
Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 |
[18] |
Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483 |
[19] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[20] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]