For a balanced bistable reaction-diffusion equation, the existence of axisymmetric traveling fronts has been studied by Chen, Guo, Ninomiya, Hamel and Roquejoffre [
Citation: |
[1] | H. Chan and J. Wei, Traveling wave solutions for bistable fractional Allen–Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609. doi: 10.1016/j.jde.2016.12.010. |
[2] | X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. |
[3] | X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141. doi: 10.1016/0022-0396(92)90146-E. |
[4] | X. Chen, J.-S. Guo, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 369-393. doi: 10.1016/j.anihpc.2006.03.012. |
[5] | M. del Pino, M. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Annals of Math., 174 (2011), 1485-1569. |
[6] | M. del Pino, M. Kowalczyk and J. Wei, Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547. |
[7] | P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432. |
[8] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. |
[9] | C. Gui, Symmetry of traveling wave solutions to the Allen–Cahn equation in $\mathbb{R}^{2}$, Arch. Rat. Mech. Anal., 203 (2012), 1037-1065. doi: 10.1007/s00205-011-0480-5. |
[10] | F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069. |
[11] | F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. |
[12] | M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 283-329. doi: 10.1016/j.anihpc.2005.03.003. |
[13] | Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen–Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054. doi: 10.1017/S0308210510001253. |
[14] | W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395. doi: 10.3934/nhm.2013.8.379. |
[15] | H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011. |
[16] | H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. |
[17] | M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen–Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788. |
[18] | M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037. |
[19] | M. Taniguchi, Pyramidal traveling fronts in the Allen–Cahn equations, RIMS Kôkyûroku, 1651 (2009), 92–109. |
[20] | M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011. |
[21] | M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476. doi: 10.1137/130945041. |
[22] | M. Taniguchi, Convex compact sets in $\mathbb{R}^{ N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{ N}$, J. Differential Equations, 260 (2016), 4301-4338. |
[23] | M. Taniguchi, Traveling front solutions in reaction-diffusion equations, submitted. |
[24] | M. Taniguchi, Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1791-1816. doi: 10.1016/j.anihpc.2019.05.001. |
[25] | X.-J. Wang, Convex solutions to the mean curvature flow, Ann. of Math., 173 (2011), 1185-1239. doi: 10.4007/annals.2011.173.3.1. |
[26] | Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339. |