\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • For a balanced bistable reaction-diffusion equation, the existence of axisymmetric traveling fronts has been studied by Chen, Guo, Ninomiya, Hamel and Roquejoffre [4]. This paper gives another proof of the existence of axisymmetric traveling fronts. Our method is as follows. We use pyramidal traveling fronts for unbalanced reaction-diffusion equations, and take the balanced limit. Then we obtain axisymmetric traveling fronts in a balanced bistable reaction-diffusion equation. Since pyramidal traveling fronts have been studied in many equations or systems, our method might be applicable to study axisymmetric traveling fronts in these equations or systems.

    Mathematics Subject Classification: Primary: 35C07, 35B20; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A level set $ \left\{ {U(\mathit{\boldsymbol{x'}}, {x_n}) = {\theta _0}} \right\}$ of $ U $

    Figure 2.  A level set $ \{V_{k}(\mathit{\boldsymbol{x}}', x_{n}) = \theta_{0}\} $ of a square pyramidal traveling front $ V_{k} $

  • [1] H. Chan and J. Wei, Traveling wave solutions for bistable fractional Allen–Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.  doi: 10.1016/j.jde.2016.12.010.
    [2] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. 
    [3] X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.
    [4] X. ChenJ.-S. GuoF. HamelH. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 369-393.  doi: 10.1016/j.anihpc.2006.03.012.
    [5] M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Annals of Math., 174 (2011), 1485-1569. 
    [6] M. del PinoM. Kowalczyk and J. Wei, Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547. 
    [7] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.
    [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
    [9] C. Gui, Symmetry of traveling wave solutions to the Allen–Cahn equation in $\mathbb{R}^{2}$, Arch. Rat. Mech. Anal., 203 (2012), 1037-1065.  doi: 10.1007/s00205-011-0480-5.
    [10] F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.  doi: 10.3934/dcds.2005.13.1069.
    [11] F. HamelR. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. 
    [12] M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 283-329.  doi: 10.1016/j.anihpc.2005.03.003.
    [13] Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen–Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.  doi: 10.1017/S0308210510001253.
    [14] W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395.  doi: 10.3934/nhm.2013.8.379.
    [15] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, 213 (2005), 204-233.  doi: 10.1016/j.jde.2004.06.011.
    [16] H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. 
    [17] M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen–Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.  doi: 10.1137/060661788.
    [18] M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.  doi: 10.1016/j.jde.2008.06.037.
    [19] M. Taniguchi, Pyramidal traveling fronts in the Allen–Cahn equations, RIMS Kôkyûroku, 1651 (2009), 92–109.
    [20] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.  doi: 10.3934/dcds.2012.32.1011.
    [21] M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.  doi: 10.1137/130945041.
    [22] M. Taniguchi, Convex compact sets in $\mathbb{R}^{ N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{ N}$, J. Differential Equations, 260 (2016), 4301-4338. 
    [23] M. Taniguchi, Traveling front solutions in reaction-diffusion equations, submitted.
    [24] M. Taniguchi, Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1791-1816.  doi: 10.1016/j.anihpc.2019.05.001.
    [25] X.-J. Wang, Convex solutions to the mean curvature flow, Ann. of Math., 173 (2011), 1185-1239.  doi: 10.4007/annals.2011.173.3.1.
    [26] Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374.  doi: 10.3934/dcds.2012.32.2339.
  • 加载中
Open Access Under a Creative Commons license

Figures(2)

SHARE

Article Metrics

HTML views(2032) PDF downloads(318) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return