December  2020, 40(12): 6855-6875. doi: 10.3934/dcds.2020132

Maximal equicontinuous generic factors and weak model sets

Department Mathematik, Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany

Received  May 2019 Revised  December 2019 Published  February 2020

The orbit closures of regular model sets generated from a cut-and-project scheme given by a co-compact lattice $ {\mathcal L}\subset G\times H $ and compact and aperiodic window $ W\subseteq H $, have the maximal equicontinuous factor (MEF) $ (G\times H)/ {\mathcal L} $, if the window is toplogically regular. This picture breaks down, when the window has empty interior, in which case the MEF is trivial, although $ (G\times H)/ {\mathcal L} $ continues to be the Kronecker factor for the Mirsky measure. As this happens for many interesting examples like the square-free numbers or the visible lattice points, a weaker concept of topological factors is needed, like that of generic factors [24]. For topological dynamical systems that possess a finite invariant measure with full support ($ E $-systems) we prove the existence of a maximal equicontinuous generic factor (MEGF) and characterize it in terms of the regional proximal relation. This part of the paper profits strongly from previous work by McMahon [33] and Auslander [2]. In Sections 3 and 4 we determine the MEGF of orbit closures of weak model sets and use this result for an alternative proof (of a generalization) of the fact [34] that the centralizer of any $ {\mathcal B} $-free dynamical system of Erdős type is trivial.

Citation: Gerhard Keller. Maximal equicontinuous generic factors and weak model sets. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6855-6875. doi: 10.3934/dcds.2020132
References:
[1]

J.-B. Aujogue, M. Barge, J. Kellendonk and D. Lenz, Equicontinuous factors, proximality and ellis semigroup for delone sets, in Mathematics of Aperiodic Order (eds. Author 3, Author 4 and J. Savinien), Birkhäuser, 309 (2015), 137–194.  Google Scholar

[2]

J. Auslander, Minimal Flows and their Extensions, vol. 153 of North Holland Mathematics Studies, 1988.  Google Scholar

[3]

M. BaakeD. Damanik and U. Grimm, What is aperiodic order?, Notices of the American Mathematical Society, 63 (2016), 647-650.  doi: 10.1090/noti1394.  Google Scholar

[4]

M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2013. doi: 10.1007/s00283-014-9487-8.  Google Scholar

[5]

M. Baake, U. Grimm and R. V. Moody, What is aperiodic order?, Notices of the AMS, , 63 (2016), 647–650, arXiv: math/0203252. doi: 10.1090/noti1394.  Google Scholar

[6]

M. Baake and C. Huck, Ergodic properties of visible lattice points, Proc. Steklov Inst. Math., 288 (2015), 165-188.  doi: 10.1134/S0081543815010137.  Google Scholar

[7]

M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory and Dynamical Systems, 24 (2004), 1867-1893.  doi: 10.1017/S0143385704000318.  Google Scholar

[8]

F. BlanchardB. Host and A. Maass, Topological complexity, Ergodic Theory and Dynamical Systems, 20 (2000), 641-662.  doi: 10.1017/S0143385700000341.  Google Scholar

[9]

G. CairnsA. Kolganova and A. Nielsen, Topological transitivity and mixing notions for group actions, Rocky Mountain Journal of Mathematics, 37 (2007), 371-397.  doi: 10.1216/rmjm/1181068757.  Google Scholar

[10]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, vol. 580 of Lecture Notes in Mathematics, Springer, 1977. doi: 10.1007/BFb0087685.  Google Scholar

[11]

F. Cellarosi and Y. G. Sinai, Ergodic properties of square-free numbers, J. Eur. Math. Soc., 15 (2013), 1343-1374.  doi: 10.4171/JEMS/394.  Google Scholar

[12]

H. Davenport and P. Erdős, On sequences of positive integers, Acta Arithmetica, 2 (1936), 147-151.  doi: 10.4064/aa-2-1-147-151.  Google Scholar

[13]

H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. (N.S.), 15 (1951), 19-24.   Google Scholar

[14]

T. Downarowicz, Weakly almost periodic flows and hidden eigenvalues,, in Topological Dynamics and Applications (eds. M. Nerurkar, D. Dokken and D. Ellis), vol. 215 of AMS Contemporary Math. Series, 101–120. Amer. Math. Soc., Providence, RI, 1998. doi: 10.1090/conm/215/02933.  Google Scholar

[15]

A. Dymek, Automorphisms of Toeplitz $ {\mathcal B}$-free systems, Bull. Pol. Acad. Sc. Math., 65 (2017), 139-152.  doi: 10.4064/ba8115-10-2017.  Google Scholar

[16]

A. Dymek, S. Kasjan and G. Keller, Automorphisms of $ {\mathcal B}$-free Toeplitz systems, in preparation. Google Scholar

[17]

A. DymekS. KasjanJ. Kułaga-Przymus and M. Lemańczyk, ${ {\mathcal B}}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.  doi: 10.1090/tran/7132.  Google Scholar

[18]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Mathematical Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[19]

H. FurstenbergY. Peres and B. Weiss, Perfect filtering and double disjointness, Annales de l'I.H.P., section B, 31 (1995), 453-465.   Google Scholar

[20]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[21]

E. Glasner and B. Weiss, Locally equicontinuous dynamical systems, Colloquium Mathematicum, 84/85 (2000), 345-361.  doi: 10.4064/cm-84/85-2-345-361.  Google Scholar

[22]

P. GlendinningT. Jäger and G. Keller, How chaotic are strange non-chaotic attractors?, Nonlinearity, 19 (2006), 2005-2022.  doi: 10.1088/0951-7715/19/9/001.  Google Scholar

[23]

R. R. Hall, Sets of Multiples, vol. 118 of Cambridge Tracts in Mathematics, Cambridge University Press, 1996. doi: 10.1017/CBO9780511566011.  Google Scholar

[24]

W. Huang and X. Ye, Generic eigenvalues, generic factors and weak disjointness, Dynamical Systems and Group Actions, 119–142, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012. doi: 10.1090/conm/567.  Google Scholar

[25]

O. Kallenberg, Foundations of Modern Probability, $2^nd$ edition, Springer, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[26]

S. KasjanG. Keller and M. Lemańczyk, Dynamics of $\mathcal B$-free sets: A view through the window, Int. Math. Res. Notices, 2019 (2019), 2690-2734.  doi: 10.1093/imrn/rnx196.  Google Scholar

[27]

G. Keller, Tautness for sets of multiples and applications to $ {\mathcal B}$-free dynamics, Studia Mathematica, 247 (2019), 205-216.  doi: 10.4064/sm180305-9-4.  Google Scholar

[28]

G. Keller and C. Richard, Dynamics on the graph of the torus parametrisation, Ergod. Th. & Dynam. Sys., 38 (2018), 1048-1085.  doi: 10.1017/etds.2016.53.  Google Scholar

[29]

G. Keller and C. Richard, Periods and factors of weak model sets, Israel J. Math., 229 (2019), 85-132.  doi: 10.1007/s11856-018-1788-8.  Google Scholar

[30]

H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Transactions of the American Mathematical Society, 139 (1969), 359-369.  doi: 10.1090/S0002-9947-1969-0237748-5.  Google Scholar

[31]

A. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press / World Scientific, Amsterdam - Paris, 2009. doi: 10.2991/978-94-91216-36-7.  Google Scholar

[32]

J. Kułaga-PrzymusM. Lemańczyk and B. Weiss, On invariant measures for ${ {\mathcal B}}$-free systems, Proceedings of the London Mathematical Society, 110 (2015), 1435-1474.  doi: 10.1112/plms/pdv017.  Google Scholar

[33]

D. C. McMahon, Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc., 236 (1978), 225-237.  doi: 10.1090/S0002-9947-1978-0467704-9.  Google Scholar

[34]

M. K. Mentzen, Automorphisms of subshifts defined by $ {\mathcal B}$-free sets of integers., Colloquium Mathematicum, 147 (2017), 87-94.  doi: 10.4064/cm6927-5-2016.  Google Scholar

[35]

R. V. Moody, Uniform distribution in model sets, Canad. Math. Bull., 45 (2002), 123-130.  doi: 10.4153/CMB-2002-015-3.  Google Scholar

[36]

J. R. Munkres, Topology, Prentice Hall, $2^nd$ edition, 2000.  Google Scholar

[37]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow, Israel J. Math., 210 (2015), 335-357.  doi: 10.1007/s11856-015-1255-8.  Google Scholar

show all references

References:
[1]

J.-B. Aujogue, M. Barge, J. Kellendonk and D. Lenz, Equicontinuous factors, proximality and ellis semigroup for delone sets, in Mathematics of Aperiodic Order (eds. Author 3, Author 4 and J. Savinien), Birkhäuser, 309 (2015), 137–194.  Google Scholar

[2]

J. Auslander, Minimal Flows and their Extensions, vol. 153 of North Holland Mathematics Studies, 1988.  Google Scholar

[3]

M. BaakeD. Damanik and U. Grimm, What is aperiodic order?, Notices of the American Mathematical Society, 63 (2016), 647-650.  doi: 10.1090/noti1394.  Google Scholar

[4]

M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2013. doi: 10.1007/s00283-014-9487-8.  Google Scholar

[5]

M. Baake, U. Grimm and R. V. Moody, What is aperiodic order?, Notices of the AMS, , 63 (2016), 647–650, arXiv: math/0203252. doi: 10.1090/noti1394.  Google Scholar

[6]

M. Baake and C. Huck, Ergodic properties of visible lattice points, Proc. Steklov Inst. Math., 288 (2015), 165-188.  doi: 10.1134/S0081543815010137.  Google Scholar

[7]

M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory and Dynamical Systems, 24 (2004), 1867-1893.  doi: 10.1017/S0143385704000318.  Google Scholar

[8]

F. BlanchardB. Host and A. Maass, Topological complexity, Ergodic Theory and Dynamical Systems, 20 (2000), 641-662.  doi: 10.1017/S0143385700000341.  Google Scholar

[9]

G. CairnsA. Kolganova and A. Nielsen, Topological transitivity and mixing notions for group actions, Rocky Mountain Journal of Mathematics, 37 (2007), 371-397.  doi: 10.1216/rmjm/1181068757.  Google Scholar

[10]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, vol. 580 of Lecture Notes in Mathematics, Springer, 1977. doi: 10.1007/BFb0087685.  Google Scholar

[11]

F. Cellarosi and Y. G. Sinai, Ergodic properties of square-free numbers, J. Eur. Math. Soc., 15 (2013), 1343-1374.  doi: 10.4171/JEMS/394.  Google Scholar

[12]

H. Davenport and P. Erdős, On sequences of positive integers, Acta Arithmetica, 2 (1936), 147-151.  doi: 10.4064/aa-2-1-147-151.  Google Scholar

[13]

H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. (N.S.), 15 (1951), 19-24.   Google Scholar

[14]

T. Downarowicz, Weakly almost periodic flows and hidden eigenvalues,, in Topological Dynamics and Applications (eds. M. Nerurkar, D. Dokken and D. Ellis), vol. 215 of AMS Contemporary Math. Series, 101–120. Amer. Math. Soc., Providence, RI, 1998. doi: 10.1090/conm/215/02933.  Google Scholar

[15]

A. Dymek, Automorphisms of Toeplitz $ {\mathcal B}$-free systems, Bull. Pol. Acad. Sc. Math., 65 (2017), 139-152.  doi: 10.4064/ba8115-10-2017.  Google Scholar

[16]

A. Dymek, S. Kasjan and G. Keller, Automorphisms of $ {\mathcal B}$-free Toeplitz systems, in preparation. Google Scholar

[17]

A. DymekS. KasjanJ. Kułaga-Przymus and M. Lemańczyk, ${ {\mathcal B}}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.  doi: 10.1090/tran/7132.  Google Scholar

[18]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Mathematical Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[19]

H. FurstenbergY. Peres and B. Weiss, Perfect filtering and double disjointness, Annales de l'I.H.P., section B, 31 (1995), 453-465.   Google Scholar

[20]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[21]

E. Glasner and B. Weiss, Locally equicontinuous dynamical systems, Colloquium Mathematicum, 84/85 (2000), 345-361.  doi: 10.4064/cm-84/85-2-345-361.  Google Scholar

[22]

P. GlendinningT. Jäger and G. Keller, How chaotic are strange non-chaotic attractors?, Nonlinearity, 19 (2006), 2005-2022.  doi: 10.1088/0951-7715/19/9/001.  Google Scholar

[23]

R. R. Hall, Sets of Multiples, vol. 118 of Cambridge Tracts in Mathematics, Cambridge University Press, 1996. doi: 10.1017/CBO9780511566011.  Google Scholar

[24]

W. Huang and X. Ye, Generic eigenvalues, generic factors and weak disjointness, Dynamical Systems and Group Actions, 119–142, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012. doi: 10.1090/conm/567.  Google Scholar

[25]

O. Kallenberg, Foundations of Modern Probability, $2^nd$ edition, Springer, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[26]

S. KasjanG. Keller and M. Lemańczyk, Dynamics of $\mathcal B$-free sets: A view through the window, Int. Math. Res. Notices, 2019 (2019), 2690-2734.  doi: 10.1093/imrn/rnx196.  Google Scholar

[27]

G. Keller, Tautness for sets of multiples and applications to $ {\mathcal B}$-free dynamics, Studia Mathematica, 247 (2019), 205-216.  doi: 10.4064/sm180305-9-4.  Google Scholar

[28]

G. Keller and C. Richard, Dynamics on the graph of the torus parametrisation, Ergod. Th. & Dynam. Sys., 38 (2018), 1048-1085.  doi: 10.1017/etds.2016.53.  Google Scholar

[29]

G. Keller and C. Richard, Periods and factors of weak model sets, Israel J. Math., 229 (2019), 85-132.  doi: 10.1007/s11856-018-1788-8.  Google Scholar

[30]

H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Transactions of the American Mathematical Society, 139 (1969), 359-369.  doi: 10.1090/S0002-9947-1969-0237748-5.  Google Scholar

[31]

A. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press / World Scientific, Amsterdam - Paris, 2009. doi: 10.2991/978-94-91216-36-7.  Google Scholar

[32]

J. Kułaga-PrzymusM. Lemańczyk and B. Weiss, On invariant measures for ${ {\mathcal B}}$-free systems, Proceedings of the London Mathematical Society, 110 (2015), 1435-1474.  doi: 10.1112/plms/pdv017.  Google Scholar

[33]

D. C. McMahon, Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc., 236 (1978), 225-237.  doi: 10.1090/S0002-9947-1978-0467704-9.  Google Scholar

[34]

M. K. Mentzen, Automorphisms of subshifts defined by $ {\mathcal B}$-free sets of integers., Colloquium Mathematicum, 147 (2017), 87-94.  doi: 10.4064/cm6927-5-2016.  Google Scholar

[35]

R. V. Moody, Uniform distribution in model sets, Canad. Math. Bull., 45 (2002), 123-130.  doi: 10.4153/CMB-2002-015-3.  Google Scholar

[36]

J. R. Munkres, Topology, Prentice Hall, $2^nd$ edition, 2000.  Google Scholar

[37]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow, Israel J. Math., 210 (2015), 335-357.  doi: 10.1007/s11856-015-1255-8.  Google Scholar

[1]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (348)
  • Cited by (1)

Other articles
by authors

[Back to Top]